Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):408–414. doi: 10.1128/aem.62.2.408-414.1996

Adaptation of Psychrophilic and Psychrotrophic Sulfate-Reducing Bacteria to Permanently Cold Marine Environments

M F Isaksen, B B Jorgensen
PMCID: PMC1388766  PMID: 16535228

Abstract

The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6(deg)C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0(deg)C. The rates of sulfate reduction were measured by the (sup35)SO(inf4)(sup2-) tracer technique at different experimental temperatures in sediment slurries. In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate environments. In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19(deg)C during short-term incubations. However, over a 1-week incubation, the highest respiration rate was observed at 12.5(deg)C. Growth of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction. The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments. The results from sediment incubations were compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain ltk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28(deg)C in short-term incubations, even though it could not grow at temperatures above 24(deg)C. Furthermore, this strain showed its highest growth yield between 0 and 12(deg)C. In contrast, the mesophilic strain ak30 respired and grew optimally and showed its highest growth yield at 30 to 35(deg)C.

Full Text

The Full Text of this article is available as a PDF (280.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Finne G., Matches J. R. Low-temperature-growing clostridia from marine sediments. Can J Microbiol. 1974 Dec;20(12):1639–1645. doi: 10.1139/m74-255. [DOI] [PubMed] [Google Scholar]
  2. Herbert R. A., Bell C. R. Growth characteristics of an obligately psychrophilic Vibrio sp. Arch Microbiol. 1977 Jun 20;113(3):215–220. doi: 10.1007/BF00492028. [DOI] [PubMed] [Google Scholar]
  3. Jørgensen B. B., Bak F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (kattegat, denmark). Appl Environ Microbiol. 1991 Mar;57(3):847–856. doi: 10.1128/aem.57.3.847-856.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jørgensen B. B., Isaksen M. F., Jannasch H. W. Bacterial Sulfate Reduction Above 100{degrees}C in Deep-Sea Hydrothermal Vent Sediments. Science. 1992 Dec 11;258(5089):1756–1757. doi: 10.1126/science.258.5089.1756. [DOI] [PubMed] [Google Scholar]
  5. Nedwell D. B., Rutter M. Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl Environ Microbiol. 1994 Jun;60(6):1984–1992. doi: 10.1128/aem.60.6.1984-1992.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Pedrós-Alió C., Brock T. D. Assessing biomass and production of bacteria in eutrophic lake mendota, wisconsin. Appl Environ Microbiol. 1982 Jul;44(1):203–218. doi: 10.1128/aem.44.1.203-218.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Traore A. S., Hatchikian C. E., Belaich J. P., Le Gall J. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol. 1981 Jan;145(1):191–199. doi: 10.1128/jb.145.1.191-199.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Traore A. S., Hatchikian C. E., Le Gall J., Belaich J. P. Microcalorimetric studies of the growth of sulfate-reducing bacteria: comparison of the growth parameters of some Desulfovibrio species. J Bacteriol. 1982 Feb;149(2):606–611. doi: 10.1128/jb.149.2.606-611.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Widdel F., Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol. 1981 Jul;129(5):395–400. doi: 10.1007/BF00406470. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES