Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Feb;62(2):473–479. doi: 10.1128/aem.62.2.473-479.1996

Bacteriocin Typing of Burkholderia (Pseudomonas) solanacearum Race 1 of the French West Indies and Correlation with Genomic Variation of the Pathogen

P Frey, J J Smith, L Albar, P Prior, G S Saddler, D Trigalet-Demery, A Trigalet
PMCID: PMC1388772  PMID: 16535234

Abstract

Burkholderia solanacearum race 1 isolates indigenous to the French West Indies were characterized by bacteriocin typing and two genomic fingerprinting methods: pulsed-field gel electrophoresis of genomic DNA digested by rare-cutting restriction endonucleases (RC-PFGE) and PCR with primers corresponding to repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and BOX elements (collectively known as rep-PCR). The survey comprised 24 reference strains and 65 isolates obtained from a field trial in Guadeloupe in 1993. Comparison of the data identified RC-PFGE as the most discriminatory method, delineating 17 pulsed-field gel profile types. rep-PCR and bacteriocin typing identified nine rep-PCR profile types and nine bacteriocin groups. Independent determination of similarity coefficients and clustering of RC-PFGE and rep-PCR data identified six groups common to both sets of data that correlated to biovar and bacteriocin groups. Further study of bacteriocin production in planta gave results consistent with in vitro bacteriocin typing. It was observed that spontaneous bacteriocin-resistant mutants exhibited a cross-resistance to other bacteriocins as identified by the typing scheme and that such mutants possessed a selective advantage for growth over isogenic nonmutants in the presence of a bacteriocin. The results are significant in the search for biological control of disease by nonpathogenic mutants of the wild-type organism.

Full Text

The Full Text of this article is available as a PDF (411.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Expert D., Toussaint A. Bacteriocin-resistant mutants of Erwinia chrysanthemi: possible involvement of iron acquisition in phytopathogenicity. J Bacteriol. 1985 Jul;163(1):221–227. doi: 10.1128/jb.163.1.221-227.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frey P., Prior P., Marie C., Kotoujansky A., Trigalet-Demery D., Trigalet A. Hrp Mutants of Pseudomonas solanacearum as Potential Biocontrol Agents of Tomato Bacterial Wilt. Appl Environ Microbiol. 1994 Sep;60(9):3175–3181. doi: 10.1128/aem.60.9.3175-3181.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gilson E., Clément J. M., Brutlag D., Hofnung M. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J. 1984 Jun;3(6):1417–1421. doi: 10.1002/j.1460-2075.1984.tb01986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gross D. C., Vidaver A. K. Bacteriocins of phytopathogenic Corynebacterium species. Can J Microbiol. 1979 Mar;25(3):367–374. doi: 10.1139/m79-057. [DOI] [PubMed] [Google Scholar]
  5. Grothues D., Tümmler B. New approaches in genome analysis by pulsed-field gel electrophoresis: application to the analysis of Pseudomonas species. Mol Microbiol. 1991 Nov;5(11):2763–2776. doi: 10.1111/j.1365-2958.1991.tb01985.x. [DOI] [PubMed] [Google Scholar]
  6. Hulton C. S., Higgins C. F., Sharp P. M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol. 1991 Apr;5(4):825–834. doi: 10.1111/j.1365-2958.1991.tb00755.x. [DOI] [PubMed] [Google Scholar]
  7. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol. 1994 Jul;60(7):2286–2295. doi: 10.1128/aem.60.7.2286-2295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martin B., Humbert O., Camara M., Guenzi E., Walker J., Mitchell T., Andrew P., Prudhomme M., Alloing G., Hakenbeck R. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 1992 Jul 11;20(13):3479–3483. doi: 10.1093/nar/20.13.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nassar A., Bertheau Y., Dervin C., Narcy J. P., Lemattre M. Ribotyping of Erwinia chrysanthemi Strains in Relation to Their Pathogenic and Geographic Distribution. Appl Environ Microbiol. 1994 Oct;60(10):3781–3789. doi: 10.1128/aem.60.10.3781-3789.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rainey P. B., Bailey M. J., Thompson I. P. Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field-grown sugar beet. Microbiology. 1994 Sep;140(Pt 9):2315–2331. doi: 10.1099/13500872-140-9-2315. [DOI] [PubMed] [Google Scholar]
  11. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Smidt M. L., Vidaver A. K. Bacteriocin production by Pseudomonas syringae PsW-1 in plant tissue. Can J Microbiol. 1982 Jun;28(6):600–604. doi: 10.1139/m82-089. [DOI] [PubMed] [Google Scholar]
  13. Smith J. J., Offord L. C., Holderness M., Saddler G. S. Genetic diversity of Burkholderia solanacearum (synonym Pseudomonas solanacearum) race 3 in Kenya. Appl Environ Microbiol. 1995 Dec;61(12):4263–4268. doi: 10.1128/aem.61.12.4263-4268.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Triplett E. W. Construction of a Symbiotically Effective Strain of Rhizobium leguminosarum bv. trifolii with Increased Nodulation Competitiveness. Appl Environ Microbiol. 1990 Jan;56(1):98–103. doi: 10.1128/aem.56.1.98-103.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vidaver A. K., Mathys M. L., Thomas M. E., Schuster M. L. Bacteriocins of the phytopathogens Pseudomonas syringae, P. glycinea, and P. phaseolicola. Can J Microbiol. 1972 Jun;18(6):705–713. doi: 10.1139/m72-113. [DOI] [PubMed] [Google Scholar]
  16. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
  17. de Bruijn F. J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992 Jul;58(7):2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES