Abstract
Everglades sediments (wetland soils) near sources of agricultural runoff had low redox potentials, were blackened with sulfide, and displayed high porewater phosphorus (total) concentrations and high water column conductivities. These sediments yielded 10(sup3)- to 10(sup4)-fold-higher numbers of culturable anaerobes, including methanogens, sulfate reducers, and acetate producers, than did sediments from Everglades and Lake Okeechobee comparative control sites not as directly associated with agricultural runoff. These observations demonstrated that there was a general, rather than specific, enhancement of the anaerobic microflora in the sediments most likely influenced by agricultural runoff. Despite these differences in microfloral patterns, methylmercury and total mercury levels were similar among these contrasting sediments. Although available sulfate and phosphorus appeared to stimulate the productivity of sulfate reducers in Everglades sediments, the number of culturable sulfate reducers did not directly correspond to the concentration of sulfate and phosphorus in porewaters. Microcosms supplemented with sulfate, nitrate, and phosphate altered the initial capacities of the sediment microflora to produce acetate and methane from endogenous matter. For sediments nearest sources of agricultural runoff, phosphorus temporarily enhanced acetate formation and initially suppressed methane production, sulfate enhanced acetate formation but did not significantly alter the production of methane, and nitrate totally suppressed the initial production of both methane and acetate. In regards to the latter, microbes capable of dissimilating nitrate to ammonium were present in greater culturable numbers than denitrifiers. In microcosms, acetate was a major source of methane, and supplemental hydrogen was directed towards the synthesis of acetate via CO(inf2)-dependent acetogenesis. These findings demonstrate that Everglades sediments nearest agricultural runoff have enhanced anaerobic microbial profiles and that the anaerobic microflora are poised to respond rapidly to phosphate, sulfate, and nitrate input.
Full Text
The Full Text of this article is available as a PDF (238.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amaral J. A., Knowles R. Methane metabolism in a temperate swamp. Appl Environ Microbiol. 1994 Nov;60(11):3945–3951. doi: 10.1128/aem.60.11.3945-3951.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman M., Chase T., Bartha R. Carbon Flow in Mercury Biomethylation by Desulfovibrio desulfuricans. Appl Environ Microbiol. 1990 Jan;56(1):298–300. doi: 10.1128/aem.56.1.298-300.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi S. C., Bartha R. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol. 1993 Jan;59(1):290–295. doi: 10.1128/aem.59.1.290-295.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi S. C., Chase T., Jr, Bartha R. Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol. 1994 Apr;60(4):1342–1346. doi: 10.1128/aem.60.4.1342-1346.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compeau G. C., Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985 Aug;50(2):498–502. doi: 10.1128/aem.50.2.498-502.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalsgaard T., Bak F. Nitrate Reduction in a Sulfate-Reducing Bacterium, Desulfovibrio desulfuricans, Isolated from Rice Paddy Soil: Sulfide Inhibition, Kinetics, and Regulation. Appl Environ Microbiol. 1994 Jan;60(1):291–297. doi: 10.1128/aem.60.1.291-297.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel S. L., Hsu T., Dean S. I., Drake H. L. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol. 1990 Aug;172(8):4464–4471. doi: 10.1128/jb.172.8.4464-4471.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilmour C. C., Henry E. A. Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut. 1991;71(2-4):131–169. doi: 10.1016/0269-7491(91)90031-q. [DOI] [PubMed] [Google Scholar]
- Gordon A. S., Cooper W. J., Scheidt D. J. Denitrification in marl and peat sediments in the Florida everglades. Appl Environ Microbiol. 1986 Nov;52(5):987–991. doi: 10.1128/aem.52.5.987-991.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamdy M. K., Noyes O. R. Formation of methyl mercury by bacteria. Appl Microbiol. 1975 Sep;30(3):424–432. doi: 10.1128/am.30.3.424-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones J. G., Simon B. M. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl Environ Microbiol. 1985 Apr;49(4):944–948. doi: 10.1128/aem.49.4.944-948.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kusel K., Drake H. L. Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl Environ Microbiol. 1995 Oct;61(10):3667–3675. doi: 10.1128/aem.61.10.3667-3675.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Küsel K., Drake H. L. Acetate synthesis in soil from a bavarian beech forest. Appl Environ Microbiol. 1994 Apr;60(4):1370–1373. doi: 10.1128/aem.60.4.1370-1373.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Klug M. J. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol. 1982 Mar;43(3):552–560. doi: 10.1128/aem.43.3.552-560.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Klug M. J. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol. 1983 Apr;45(4):1310–1315. doi: 10.1128/aem.45.4.1310-1315.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarty G. W., Bremner J. M. Effects of Mn2+ and Mg2+ on assimilation of NO3- and NH4+ by soil microorganisms. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9403–9407. doi: 10.1073/pnas.90.20.9403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regnell O. The effect of pH and dissolved oxygen levels on methylation and partitioning of mercury in freshwater model systems. Environ Pollut. 1994;84(1):7–13. doi: 10.1016/0269-7491(94)90064-7. [DOI] [PubMed] [Google Scholar]
- Regnell O., Tunlid A. Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions. Appl Environ Microbiol. 1991 Mar;57(3):789–795. doi: 10.1128/aem.57.3.789-795.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifritz C., Daniel S. L., Gössner A., Drake H. L. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol. 1993 Dec;175(24):8008–8013. doi: 10.1128/jb.175.24.8008-8013.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stams A. J. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek. 1994;66(1-3):271–294. doi: 10.1007/BF00871644. [DOI] [PubMed] [Google Scholar]
- Vonk J. W., Sijpesteijn A. K. Studies on the methylation of mercuric chloride by pure cultures of bacteria and fungi. Antonie Van Leeuwenhoek. 1973;39(3):505–513. doi: 10.1007/BF02578894. [DOI] [PubMed] [Google Scholar]
- Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]
- Yannai S., Berdicevsky I., Duek L. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl Environ Microbiol. 1991 Jan;57(1):245–247. doi: 10.1128/aem.57.1.245-247.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeikus J. G., Winfrey M. R. Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol. 1976 Jan;31(1):99–107. doi: 10.1128/aem.31.1.99-107.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]