Abstract
A colony of Plutella xylostella from crucifer fields in Florida was used in mortality bioassays with HD-1 spore, CryIA(a), CryIA(b), CryIA(c), CryIB, CryIC, CryID, CryIE, or CryIIA. The data revealed high levels of field-evolved resistance to HD-1 spore and all CryIA protoxins and no resistance to CryIB, CryIC, or CryID. CryIE and CryIIA were essentially not toxic. When HD-1 spore was combined 1:1 with protoxin and fed to susceptible larvae, spore synergized the activity of CryIA and CryIC 5- to 8-fold and 1.7-fold, respectively, and did not synergize the mortality of CryIIA. When fed to Florida larvae, spore failed to synergize the activity of all three CryIA protoxins, synergized the activity of CryIC 5.3-fold, and did not synergize the mortality for CryIIA. Binding studies with CryIA(b), CryIB, and CryIC were performed to determine possible mechanisms of resistance. The two techniques used were (i) binding of biotinylated toxin to tissue sections of larval midguts and (ii) binding of biotinylated toxin to brush border membrane vesicles prepared from whole larvae. Both showed dramatically reduced binding of CryIA(b) in resistant larvae compared with that in susceptible larvae but no differences in binding of CryIB or CryIC.
Full Text
The Full Text of this article is available as a PDF (270.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Denolf P., Jansens S., Peferoen M., Degheele D., Van Rie J. Two Different Bacillus thuringiensis Delta-Endotoxin Receptors in the Midgut Brush Border Membrane of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae). Appl Environ Microbiol. 1993 Jun;59(6):1828–1837. doi: 10.1128/aem.59.6.1828-1837.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denolf P., Jansens S., Van Houdt S., Peferoen M., Degheele D., Van Rie J. Biotinylation of Bacillus thuringiensis Insecticidal Crystal Proteins. Appl Environ Microbiol. 1993 Jun;59(6):1821–1827. doi: 10.1128/aem.59.6.1821-1827.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escriche B., Tabashnik B., Finson N., Ferré J. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun. 1995 Jul 17;212(2):388–395. doi: 10.1006/bbrc.1995.1982. [DOI] [PubMed] [Google Scholar]
- Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hama H., Sakurai T., Kasuya Y., Fujiki M., Masaki T., Goto K. Action of endothelin-1 on rat astrocytes through the ETB receptor. Biochem Biophys Res Commun. 1992 Jul 15;186(1):355–362. doi: 10.1016/s0006-291x(05)80815-0. [DOI] [PubMed] [Google Scholar]
- Höfte H., Soetaert P., Jansens S., Peferoen M. Nucleotide sequence and deduced amino acid sequence of new Lepidoptera-specific crystal protein gene from Bacillus thuringiensis. Nucleic Acids Res. 1990 Sep 25;18(18):5545–5545. doi: 10.1093/nar/18.18.5545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., de Greve H., Seurinck J., Jansens S., Mahillon J., Ampe C., Vandekerckhove J., Vanderbruggen H., van Montagu M., Zabeau M. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur J Biochem. 1986 Dec 1;161(2):273–280. doi: 10.1111/j.1432-1033.1986.tb10443.x. [DOI] [PubMed] [Google Scholar]
- Knight P. J., Knowles B. H., Ellar D. J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem. 1995 Jul 28;270(30):17765–17770. doi: 10.1074/jbc.270.30.17765. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
- McGaughey W. H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 1985 Jul 12;229(4709):193–195. doi: 10.1126/science.229.4709.193. [DOI] [PubMed] [Google Scholar]
- Moar W. J., Masson L., Brousseau R., Trumble J. T. Toxicity to Spodoptera exigua and Trichoplusia ni of individual P1 protoxins and sporulated cultures of Bacillus thuringiensis subsp. kurstaki HD-1 and NRD-12. Appl Environ Microbiol. 1990 Aug;56(8):2480–2483. doi: 10.1128/aem.56.8.2480-2483.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moar W. J., Trumble J. T., Hice R. H., Backman P. A. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl Environ Microbiol. 1994 Mar;60(3):896–902. doi: 10.1128/aem.60.3.896-902.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppert B., Kramer K. J., Johnson D. E., MacIntosh S. C., McGaughey W. H. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem Biophys Res Commun. 1994 Feb 15;198(3):940–947. doi: 10.1006/bbrc.1994.1134. [DOI] [PubMed] [Google Scholar]
- Rahardja U., Whalon M. E. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA delta-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1995 Feb;88(1):21–26. doi: 10.1093/jee/88.1.21. [DOI] [PubMed] [Google Scholar]
- Roush R. T., McKenzie J. A. Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol. 1987;32:361–380. doi: 10.1146/annurev.en.32.010187.002045. [DOI] [PubMed] [Google Scholar]
- Tabashnik B. E. Evaluation of synergism among Bacillus thuringiensis toxins. Appl Environ Microbiol. 1992 Oct;58(10):3343–3346. doi: 10.1128/aem.58.10.3343-3346.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Groeters F. R., Moar W. J., Johnson M. W., Luo K., Adang M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Heckel D. G. Cross-Resistance to Bacillus thuringiensis Toxin CryIF in the Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1994 Dec;60(12):4627–4629. doi: 10.1128/aem.60.12.4627-4629.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
- Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D., Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science. 1990 Jan 5;247(4938):72–74. doi: 10.1126/science.2294593. [DOI] [PubMed] [Google Scholar]