Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1383–1390. doi: 10.1128/aem.62.4.1383-1390.1996

Genotyping of Heterotrophic Bacteria from the Central Baltic Sea by Use of Low-Molecular-Weight RNA Profiles

M G Hofle, I Brettar
PMCID: PMC1388834  PMID: 16535296

Abstract

The Gotland Deep, an anoxic basin, was investigated for its heterotrophic microflora as a station representative of the central Baltic Sea and as an example of a brackish water environment. One hundred twenty-three bacterial strains were isolated along the water column by use of four different cultivation procedures. High-resolution electrophoresis of the low-molecular-weight (LMW) RNA (5S rRNA and tRNA) was used for analysis of the taxonomic position of the strains. The banding pattern of the LMW RNA generated by the electrophoresis allowed a taxonomic grouping at the species level of the 123 strains into 24 different genotypes. This grouping was confirmed by use of long-range gels with a substantially better resolution than that of standard gels; i.e., about 60% more tRNA bands were obtained on the long-range gels, and the distance between the bands was increased by about two-thirds. The majority of the strains (76%) could be identified to the species level by comparison with LMW RNA profiles from reference strains stored in an electronic database. Eighty-seven percent of the strains could be assigned to the families Vibrionaceae, Enterobacteriaceae, and Pseudomonadaceae (rRNA group I). The most abundant species among the isolates were Shewanella putrefaciens (48%) and a new Pseudomonas species (24%). The remaining fraction of 28% of the isolates was split into 22 other genotypes. Thirteen of these genotypes were represented by single isolates. This study demonstrates the utility of LMW RNA profiling for a rapid assessment of genotypic diversity of heterotrophic isolates from natural environments.

Full Text

The Full Text of this article is available as a PDF (582.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumann L., Baumann P., Mandel M., Allen R. D. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972 Apr;110(1):402–429. doi: 10.1128/jb.110.1.402-429.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boivin-Jahns V., Bianchi A., Ruimy R., Garcin J., Daumas S., Christen R. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol. 1995 Sep;61(9):3400–3406. doi: 10.1128/aem.61.9.3400-3406.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bull A. T., Goodfellow M., Slater J. H. Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol. 1992;46:219–252. doi: 10.1146/annurev.mi.46.100192.001251. [DOI] [PubMed] [Google Scholar]
  5. Höfle M. G. Bacterioplankton community structure and dynamics after large-scale release of nonindigenous bacteria as revealed by low-molecular-weight-RNA analysis. Appl Environ Microbiol. 1992 Oct;58(10):3387–3394. doi: 10.1128/aem.58.10.3387-3394.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Katsivela E., Höfle M. G. Separation of transfer RNA and 5S ribosomal RNA using capillary electrophoresis. J Chromatogr A. 1995 May 12;700(1-2):125–136. doi: 10.1016/0021-9673(94)01091-r. [DOI] [PubMed] [Google Scholar]
  7. Myers C. R., Nealson K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988 Jun 3;240(4857):1319–1321. doi: 10.1126/science.240.4857.1319. [DOI] [PubMed] [Google Scholar]
  8. Rüger H. J., Höfle M. G. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol. 1992 Jan;42(1):133–143. doi: 10.1099/00207713-42-1-133. [DOI] [PubMed] [Google Scholar]
  9. SREENIVASAN A., VENKATARAMAN R. Marine denitrifying bacteria from South India. J Gen Microbiol. 1956 Oct;15(2):241–247. doi: 10.1099/00221287-15-2-241. [DOI] [PubMed] [Google Scholar]
  10. Samuelsson M. O. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl Environ Microbiol. 1985 Oct;50(4):812–815. doi: 10.1128/aem.50.4.812-815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schut F., de Vries E. J., Gottschal J. C., Robertson B. R., Harder W., Prins R. A., Button D. K. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. Appl Environ Microbiol. 1993 Jul;59(7):2150–2160. doi: 10.1128/aem.59.7.2150-2160.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Slade P. J., Collins-Thompson D. L. Differentiation of the genus Listeria from other gram-positive species based on low molecular weight (LMW) RNA profiles. J Appl Bacteriol. 1991 Apr;70(4):355–360. doi: 10.1111/j.1365-2672.1991.tb02949.x. [DOI] [PubMed] [Google Scholar]
  13. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES