Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1458–1460. doi: 10.1128/aem.62.4.1458-1460.1996

Anaerobic, Nitrate-Dependent Microbial Oxidation of Ferrous Iron

K L Straub, M Benz, B Schink, F Widdel
PMCID: PMC1388836  PMID: 16535298

Abstract

Enrichment and pure cultures of nitrate-reducing bacteria were shown to grow anaerobically with ferrous iron as the only electron donor or as the additional electron donor in the presence of acetate. The newly observed bacterial process may significantly contribute to ferric iron formation in the suboxic zone of aquatic sediments.

Full Text

The Full Text of this article is available as a PDF (183.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake R. C., 2nd, Shute E. A., Greenwood M. M., Spencer G. H., Ingledew W. J. Enzymes of aerobic respiration on iron. FEMS Microbiol Rev. 1993 Jul;11(1-3):9–18. doi: 10.1111/j.1574-6976.1993.tb00261.x. [DOI] [PubMed] [Google Scholar]
  2. Ehrenreich A., Widdel F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol. 1994 Dec;60(12):4517–4526. doi: 10.1128/aem.60.12.4517-4526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies. Appl Environ Microbiol. 1994 Nov;60(11):4022–4031. doi: 10.1128/aem.60.11.4022-4031.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Emerson D., Revsbech N. P. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Laboratory Studies. Appl Environ Microbiol. 1994 Nov;60(11):4032–4038. doi: 10.1128/aem.60.11.4032-4038.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallus C., Schink B. Anaerobic degradation of pimelate by newly isolated denitrifying bacteria. Microbiology. 1994 Feb;140(Pt 2):409–416. doi: 10.1099/13500872-140-2-409. [DOI] [PubMed] [Google Scholar]
  6. Lovley D. R. Dissimilatory metal reduction. Annu Rev Microbiol. 1993;47:263–290. doi: 10.1146/annurev.mi.47.100193.001403. [DOI] [PubMed] [Google Scholar]
  7. Nealson K. H., Saffarini D. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol. 1994;48:311–343. doi: 10.1146/annurev.mi.48.100194.001523. [DOI] [PubMed] [Google Scholar]
  8. Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995 Feb;163(2):96–103. doi: 10.1007/BF00381782. [DOI] [PubMed] [Google Scholar]
  9. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van Hecke K., Van Cleemput O., Baert L. Chemo-denitrification of nitrate-polluted water. Environ Pollut. 1990;63(3):261–274. doi: 10.1016/0269-7491(90)90159-a. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES