Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Apr;62(4):1487–1490. doi: 10.1128/aem.62.4.1487-1490.1996

Deflocculation of Activated Sludge by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY

F Caccavo, B Frolund, Kloeke F Van Ommen, P H Nielsen
PMCID: PMC1388837  PMID: 16535299

Abstract

The influence of microbial Fe(III) reduction on the deflocculation of autoclaved activated sludge was investigated. Fe(III) flocculated activated sludge better than Fe(II). Decreasing concentrations of Fe(III) caused an increase in sludge bulk water turbidity, while bulk water turbidity remained relatively constant over a range of Fe(II) concentrations. Cells of the dissimilatory metal-reducing bacterium Shewanella alga BrY coupled the oxidation of H(inf2) to the reduction of Fe(III) bound in sludge flocs. Cell adhesion to the Fe(III)-sludge flocs was a prerequisite for Fe(III) reduction. The reduction of Fe(III) in sludge flocs by strain BrY caused an increase in bulk water turbidity, suggesting that the sludge was deflocculated. The results of this study support previous research suggesting that microbial Fe(III) respiration may have an impact on the floc structure and colloidal chemistry of activated sludge.

Full Text

The Full Text of this article is available as a PDF (179.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caccavo F., Blakemore R. P., Lovley D. R. A Hydrogen-Oxidizing, Fe(III)-Reducing Microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol. 1992 Oct;58(10):3211–3216. doi: 10.1128/aem.58.10.3211-3216.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Frølund B., Griebe T., Nielsen P. H. Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol. 1995 Aug-Sep;43(4):755–761. doi: 10.1007/BF00164784. [DOI] [PubMed] [Google Scholar]
  3. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ikeda F., Shuto H., Saito T., Fukui T., Tomita K. An extracellular polysaccharide produced by Zoogloea ramigera 115. Eur J Biochem. 1982 Apr 1;123(2):437–445. doi: 10.1111/j.1432-1033.1982.tb19787.x. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lovley D. R., Phillips E. J. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol. 1987 Jul;53(7):1536–1540. doi: 10.1128/aem.53.7.1536-1540.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES