Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 May;62(5):1583–1588. doi: 10.1128/aem.62.5.1583-1588.1996

The Importance of Hydrogen in Landfill Fermentations

M R Mormile, K R Gurijala, J A Robinson, M J McInerney, J M Suflita
PMCID: PMC1388848  PMID: 16535310

Abstract

Forty-two samples taken from two landfills were monitored for CH(inf4) production and apparent steady-state H(inf2) concentration. The rates of methanogenesis in these samples ranged from below the detection limit to 1,900 (mu)mol kg (dry weight)(sup-1) day(sup-1), and the median steady-state hydrogen concentration was 1.4 (mu)M in one landfill and 5.2 (mu)M in the other. To further investigate the relationship between hydrogen concentration and methanogenesis, a subset of seven landfill samples was selected on basis of their rates of CH(inf4) production, H(inf2) concentrations, sample pHs, and moisture contents. Samples with H(inf2) concentrations of <20 nM had relatively small amounts of volatile fatty acids (VFAs) (undetectable to 18.6 mmol of VFA kg [dry weight](sup-1)), while samples with H(inf2) concentrations of >100 nM had relatively high VFA levels (133 to 389 mmol of VFA kg [dry weight](sup-1)). Samples with high H(inf2) and VFA contents had relatively low pH values (<=6.3). However, methanogenic and syntrophic bacteria were present in all samples, so the lack of methanogenesis in some samples was not due to a lack of suitable inocula. The low rates of methanogenesis in these samples were probably due to inhibitory effects of low pH and VFA accumulation, resulting from a thermodynamic uncoupling of fatty acid oxidation. As in other anaerobic ecosystems, H(inf2) is a critical intermediate that may be used to monitor the status of landfill fermentations.

Full Text

The Full Text of this article is available as a PDF (300.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barlaz M. A., Schaefer D. M., Ham R. K. Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol. 1989 Jan;55(1):55–65. doi: 10.1128/aem.55.1.55-65.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barlaz M. A., Schaefer D. M., Ham R. K. Effects of prechilling and sequential washing on enumeration of microorganisms from refuse. Appl Environ Microbiol. 1989 Jan;55(1):50–54. doi: 10.1128/aem.55.1.50-54.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conrad R., Phelps T. J., Zeikus J. G. Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments. Appl Environ Microbiol. 1985 Sep;50(3):595–601. doi: 10.1128/aem.50.3.595-601.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferguson T. J., Mah R. A. Effect of H(2)-CO(2) on Methanogenesis from Acetate or Methanol in Methanosarcina spp. Appl Environ Microbiol. 1983 Aug;46(2):348–355. doi: 10.1128/aem.46.2.348-355.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferry J. G., Wolfe R. S. Nutritional and biochemical characterization of Methanospirillum hungatii. Appl Environ Microbiol. 1977 Oct;34(4):371–376. doi: 10.1128/aem.34.4.371-376.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fukuzaki S., Nishio N., Shobayashi M., Nagai S. Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate. Appl Environ Microbiol. 1990 Mar;56(3):719–723. doi: 10.1128/aem.56.3.719-723.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson S. A., Suflita J. M. Role of electron-donating cosubstrates in the anaerobic biotransformation of chlorophenoxyacetates to chlorophenols by a bacterial consortium enriched on phenoxyacetate. Biodegradation. 1993;4(1):51–57. doi: 10.1007/BF00701454. [DOI] [PubMed] [Google Scholar]
  9. Goodwin S., Conrad R., Zeikus J. G. Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. Appl Environ Microbiol. 1988 Feb;54(2):590–593. doi: 10.1128/aem.54.2.590-593.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mah R. A., Ward D. M., Baresi L., Glass T. L. Biogenesis of methane. Annu Rev Microbiol. 1977;31:309–341. doi: 10.1146/annurev.mi.31.100177.001521. [DOI] [PubMed] [Google Scholar]
  11. Pauss A., Andre G., Perrier M., Guiot S. R. Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process. Appl Environ Microbiol. 1990 Jun;56(6):1636–1644. doi: 10.1128/aem.56.6.1636-1644.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robinson J. A., Tiedje J. M. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl Environ Microbiol. 1982 Dec;44(6):1374–1384. doi: 10.1128/aem.44.6.1374-1384.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WOLIN E. A., WOLIN M. J., WOLFE R. S. FORMATION OF METHANE BY BACTERIAL EXTRACTS. J Biol Chem. 1963 Aug;238:2882–2886. [PubMed] [Google Scholar]
  15. Weimer P. J., Zeikus J. G. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol. 1977 Feb;33(2):289–297. doi: 10.1128/aem.33.2.289-297.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES