Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):1908–1912. doi: 10.1128/aem.62.6.1908-1912.1996

Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons

E Deziel, G Paquette, R Villemur, F Lepine, J Bisaillon
PMCID: PMC1388868  PMID: 16535330

Abstract

The capacity of polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria to produce biosurfactants was investigated. Twenty-three bacteria isolated from a soil contaminated with petroleum wastes were able to form clearing zones on mineral salt agar plates sprayed with solutions of PAHs. Naphthalene and phenanthrene were utilized as sole substrates. Biosurfactant production was detected by surface tension lowering and emulsifying activities from 10 of these strains grown in an iron-limited salt medium supplemented with high concentrations of dextrose or mannitol, as well as with naphthalene or phenanthrene. Glycolipid determinations showed that in cultures of Pseudomonas aeruginosa 19SJ on naphthalene, the maximal productivity of biosurfactants was delayed compared with that in cultures grown on mannitol. However, when small amounts of biosurfactants and naphthalene degradation intermediates were present at the onset of the cultivation, the delay was markedly shortened. Production of biosurfactants was accompanied by an increase in the aqueous concentration of naphthalene, indicating that the microorganism was promoting the solubility of its substrate. Detectable amounts of glycolipids were also produced on phenanthrene. This is the first report of biosurfactant production resulting from PAH metabolism.

Full Text

The Full Text of this article is available as a PDF (241.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouchez M., Blanchet D., Vandecasteele J. P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol. 1995 Apr;43(1):156–164. doi: 10.1007/BF00170638. [DOI] [PubMed] [Google Scholar]
  2. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. doi: 10.1126/science.6353574. [DOI] [PubMed] [Google Scholar]
  3. Fiechter A. Biosurfactants: moving towards industrial application. Trends Biotechnol. 1992 Jun;10(6):208–217. doi: 10.1016/0167-7799(92)90215-h. [DOI] [PubMed] [Google Scholar]
  4. Guerin W. F., Jones G. E. Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol. 1988 Apr;54(4):937–944. doi: 10.1128/aem.54.4.937-944.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guerin W. F., Jones G. E. Two-stage mineralization of phenanthrene by estuarine enrichment cultures. Appl Environ Microbiol. 1988 Apr;54(4):929–936. doi: 10.1128/aem.54.4.929-936.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guerra-Santos L., Käppeli O., Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol. 1984 Aug;48(2):301–305. doi: 10.1128/aem.48.2.301-305.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hommel R. K. Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation. 1990;1(2-3):107–119. doi: 10.1007/BF00058830. [DOI] [PubMed] [Google Scholar]
  8. Kiyohara H., Nagao K., Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol. 1982 Feb;43(2):454–457. doi: 10.1128/aem.43.2.454-457.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kiyohara H., Torigoe S., Kaida N., Asaki T., Iida T., Hayashi H., Takizawa N. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol. 1994 Apr;176(8):2439–2443. doi: 10.1128/jb.176.8.2439-2443.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koch A. K., Käppeli O., Fiechter A., Reiser J. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol. 1991 Jul;173(13):4212–4219. doi: 10.1128/jb.173.13.4212-4219.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mueller J. G., Chapman P. J., Blattmann B. O., Pritchard P. H. Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol. 1990 Apr;56(4):1079–1086. doi: 10.1128/aem.56.4.1079-1086.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oberbremer A., Müller-Hurtig R., Wagner F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol. 1990 Jan;32(4):485–489. doi: 10.1007/BF00903788. [DOI] [PubMed] [Google Scholar]
  13. Ochsner U. A., Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6424–6428. doi: 10.1073/pnas.92.14.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosenberg M. Basic and applied aspects of microbial adhesion at the hydrocarbon:water interface. Crit Rev Microbiol. 1991;18(2):159–173. doi: 10.3109/10408419109113512. [DOI] [PubMed] [Google Scholar]
  15. Stringfellow W. T., Aitken M. D. Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Can J Microbiol. 1994 Jun;40(6):432–438. doi: 10.1139/m94-071. [DOI] [PubMed] [Google Scholar]
  16. Syldatk C., Lang S., Wagner F., Wray V., Witte L. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C. 1985 Jan-Feb;40(1-2):51–60. doi: 10.1515/znc-1985-1-212. [DOI] [PubMed] [Google Scholar]
  17. Sylvestre M. Isolation Method for Bacterial Isolates Capable of Growth on p-Chlorobiphenyl. Appl Environ Microbiol. 1980 Jun;39(6):1223–1224. doi: 10.1128/aem.39.6.1223-1224.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol. 1994 Jan;60(1):258–263. doi: 10.1128/aem.60.1.258-263.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Volkering F., Breure A. M., van Andel J. G., Rulkens W. H. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol. 1995 May;61(5):1699–1705. doi: 10.1128/aem.61.5.1699-1705.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wodzinski R. S., Coyle J. E. Physical state of phenanthrene for utilization by bacteria. Appl Microbiol. 1974 Jun;27(6):1081–1084. doi: 10.1128/am.27.6.1081-1084.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhang Y., Miller R. M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 1992 Oct;58(10):3276–3282. doi: 10.1128/aem.58.10.3276-3282.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES