Abstract
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.
Full Text
The Full Text of this article is available as a PDF (283.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe K., Uchida K. Non-PTS uptake and subsequent metabolism of glucose in Pediococcus halophilus as demonstrated with a double mutant defective in phosphoenolpyruvate:mannose phosphotransferase system and in phosphofructokinase. Arch Microbiol. 1990;153(6):537–540. doi: 10.1007/BF00245262. [DOI] [PubMed] [Google Scholar]
- Champomier M. C., Montel M. C., Grimont F., Grimont P. A. Genomic identification of meat Lactobacilli as Lactobacillus sake. Ann Inst Pasteur Microbiol. 1987 Nov-Dec;138(6):751–758. doi: 10.1016/0769-2609(87)90153-0. [DOI] [PubMed] [Google Scholar]
- Chassy B. M., Alpert C. A. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev. 1989 Jun;5(1-2):157–165. doi: 10.1016/0168-6445(89)90020-x. [DOI] [PubMed] [Google Scholar]
- Deutscher J., Reizer J., Fischer C., Galinier A., Saier M. H., Jr, Steinmetz M. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol. 1994 Jun;176(11):3336–3344. doi: 10.1128/jb.176.11.3336-3344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erni B., Zanolari B. The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem. 1985 Dec 15;260(29):15495–15503. [PubMed] [Google Scholar]
- Fillmore M., Vogel-Sprott M. Expected effect of caffeine on motor performance predicts the type of response to placebo. Psychopharmacology (Berl) 1992;106(2):209–214. doi: 10.1007/BF02801974. [DOI] [PubMed] [Google Scholar]
- Gauthier L., Thomas S., Gagnon G., Frenette M., Trahan L., Vadeboncoeur C. Positive selection for resistance to 2-deoxyglucose gives rise, in Streptococcus salivarius, to seven classes of pleiotropic mutants, including ptsH and ptsI missense mutants. Mol Microbiol. 1994 Sep;13(6):1101–1109. doi: 10.1111/j.1365-2958.1994.tb00501.x. [DOI] [PubMed] [Google Scholar]
- Grant I. R., Patterson M. F. A numerical taxonomic study of lactic acid bacteria isolated from irradiated pork and chicken packaged under various gas atmospheres. J Appl Bacteriol. 1991 Apr;70(4):302–307. doi: 10.1111/j.1365-2672.1991.tb02940.x. [DOI] [PubMed] [Google Scholar]
- Hueck C. J., Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol. 1995 Feb;15(3):395–401. doi: 10.1111/j.1365-2958.1995.tb02252.x. [DOI] [PubMed] [Google Scholar]
- Hugas M., Garriga M., Aymerich T., Monfort J. M. Biochemical characterization of lactobacilli from dry fermented sausages. Int J Food Microbiol. 1993 Apr;18(2):107–113. doi: 10.1016/0168-1605(93)90215-3. [DOI] [PubMed] [Google Scholar]
- Ledesma O. V., De Ruiz Holgado A. P., Oliver G., De Giori G. S., Raibaud P., Galpin J. V. A synthetic medium for comparative nutritional studies of lactobacilli. J Appl Bacteriol. 1977 Feb;42(1):123–133. doi: 10.1111/j.1365-2672.1977.tb00676.x. [DOI] [PubMed] [Google Scholar]
- Liu M. L., Kondo J. K., Barnes M. B., Bartholomew D. T. Plasmid-linked maltose utilization in Lactobacillus ssp. Biochimie. 1988 Mar;70(3):351–355. doi: 10.1016/0300-9084(88)90207-6. [DOI] [PubMed] [Google Scholar]
- Montel M. C., Champomier M. C. Arginine catabolism in Lactobacillus sake isolated from meat. Appl Environ Microbiol. 1987 Nov;53(11):2683–2685. doi: 10.1128/aem.53.11.2683-2685.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T. Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol. 1981 Oct;148(1):64–71. doi: 10.1128/jb.148.1.64-71.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):125–147. doi: 10.1111/j.1574-6976.1993.tb00015.x. [DOI] [PubMed] [Google Scholar]
- Postma P. W. Galactose transport in Salmonella typhimurium. J Bacteriol. 1977 Feb;129(2):630–639. doi: 10.1128/jb.129.2.630-639.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postma P. W., Stock J. B. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. J Bacteriol. 1980 Feb;141(2):476–484. doi: 10.1128/jb.141.2.476-484.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reizer J., Peterkofsky A., Romano A. H. Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate:glycose phosphotransferase activity. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2041–2045. doi: 10.1073/pnas.85.7.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stintzi A., Cornelis P., Hohnadel D., Meyer J. M., Dean C., Poole K., Kourambas S., Krishnapillai V. Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology. 1996 May;142(Pt 5):1181–1190. doi: 10.1099/13500872-142-5-1181. [DOI] [PubMed] [Google Scholar]
- Vadeboncoeur C., Gauthier L., Gagnon G., Leduc A., Brochu D., Lapointe R., Desjardins B., Frenette M. Properties of a Streptococcus salivarius spontaneous mutant in which the methionine at position 48 in the protein HPr has been replaced by a valine. J Bacteriol. 1994 Jan;176(2):524–527. doi: 10.1128/jb.176.2.524-527.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veyrat A., Monedero V., Pérez-Martínez G. Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology. 1994 May;140(Pt 5):1141–1149. doi: 10.1099/13500872-140-5-1141. [DOI] [PubMed] [Google Scholar]
- Ye J. J., Neal J. W., Cui X., Reizer J., Saier M. H., Jr Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis. J Bacteriol. 1994 Jun;176(12):3484–3492. doi: 10.1128/jb.176.12.3484-3492.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye J. J., Reizer J., Cui X., Saier M. H., Jr Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J Biol Chem. 1994 Apr 22;269(16):11837–11844. [PubMed] [Google Scholar]
- de Vos W. M., Boerrigter I., van Rooyen R. J., Reiche B., Hengstenberg W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem. 1990 Dec 25;265(36):22554–22560. [PubMed] [Google Scholar]