Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2106–2110. doi: 10.1128/aem.62.6.2106-2110.1996

Induction of the d-Amino Acid Oxidase from Trigonopsis variabilis

R Horner, F Wagner, L Fischer
PMCID: PMC1388877  PMID: 16535339

Abstract

Induction of the d-amino acid oxidase (EC. 1.4.3.3) from the yeast Trigonopsis variabilis was investigated by using a minimal medium containing glucose as the carbon and energy source, (NH(inf4))(inf2)SO(inf4) as the nitrogen source, and various d- and dl-amino acid derivatives as inducers. The best new inducers found were N-carbamoyl-d-alanine, N-acetyl-d-tryptophan, and N-chloroacetyl-d-(alpha)-aminobutyric acid; when the induction effects of these compounds were compared with the effects of d-alanine as the nitrogen source and inducer, the resulting activities of d-amino acid oxidase per gram of dried yeast were 4.2, 2.1, and 1.5 times higher, respectively. The optimum concentration of the best inducer, N-carbamoyl-d-alanine, was 5 mM. This inducer could also be used in its racemic form. The induction was pH dependent. After cultivation of the yeast in a 50-liter bioreactor, d-amino acid oxidase activity of about 3,850 (mu)kat (231,000 U) was obtained. In addition, production of the d-amino acid oxidase was found to be significantly dependent on the metal salt composition of the medium. Addition of zinc ions was required to obtain high d-amino acid oxidase levels in the cells. The optimum concentration of ZnSO(inf4) was about 140 (mu)M.

Full Text

The Full Text of this article is available as a PDF (274.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz F., Liersch M., Nüesch J., Treichler H. J. Methionine metabolism and cephalosporin C synthesis in Cephalosporium acremonium. D-amino acid oxidase. Eur J Biochem. 1971 May 11;20(1):81–88. doi: 10.1111/j.1432-1033.1971.tb01365.x. [DOI] [PubMed] [Google Scholar]
  2. Berg C. P., Rodden F. A. Purification of D-amino oxidase from Trigonopsis variabilis. Anal Biochem. 1976 Mar;71(1):214–222. doi: 10.1016/0003-2697(76)90030-0. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cocucci M. C., Rossi G. Biochemical and morphological aspects of zinc deficiency in Rhodotorula gracilis. Arch Mikrobiol. 1972;85(4):267–279. doi: 10.1007/BF00549265. [DOI] [PubMed] [Google Scholar]
  5. Fischer L., Hörner R., Wagner F. Production of L-amino acids by applying D-amino acid oxidases. Ann N Y Acad Sci. 1995 Mar 31;750:415–420. doi: 10.1111/j.1749-6632.1995.tb19987.x. [DOI] [PubMed] [Google Scholar]
  6. Gemeiner P., Stefuca V., Welwardová A., Michálková E., Welward L., Kurillová L., Danielsson B. Direct determination of the cephalosporin transforming activity of immobilized cells with use of an enzyme thermistor. 1. Verification of the mathematical model. Enzyme Microb Technol. 1993 Jan;15(1):50–56. doi: 10.1016/0141-0229(93)90115-i. [DOI] [PubMed] [Google Scholar]
  7. Komai H., Neilands J. B. Effect of zinc ions on delta-aminolevulinate dehydratase in Ustilagoo sphaerogena. Arch Biochem Biophys. 1968 Mar 20;124(1):456–461. doi: 10.1016/0003-9861(68)90352-4. [DOI] [PubMed] [Google Scholar]
  8. Konno R., Uchiyama S., Yasumura Y. Intraspecies and interspecies variations in the substrate specificity of D-amino acid oxidase. Comp Biochem Physiol B. 1982;71(4):735–738. doi: 10.1016/0305-0491(82)90490-4. [DOI] [PubMed] [Google Scholar]
  9. Kubicek-Pranz E. M., Röhr M. D-amino acid oxidase from the yeast Trigonopsis variabilis. J Appl Biochem. 1985 Apr;7(2):104–113. [PubMed] [Google Scholar]
  10. Percheron G., Thibault F., Paucod J., Vidal D. Burkholderia pseudomallei Requires Zn(sup2+) for Optimal Exoprotease Production in Chemically Defined Media. Appl Environ Microbiol. 1995 Aug;61(8):3151–3153. doi: 10.1128/aem.61.8.3151-3153.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perotti M. E., Pollegioni L., Pilone M. S. Expression of D-amino acid oxidase in Rhodotorula gracilis under induction conditions: a biochemical and cytochemical study. Eur J Cell Biol. 1991 Jun;55(1):104–113. [PubMed] [Google Scholar]
  12. Pistorius E. K., Voss H. A D-amino acid oxidase from Chlorella vulgaris. Biochim Biophys Acta. 1977 Apr 12;481(2):395–406. doi: 10.1016/0005-2744(77)90273-x. [DOI] [PubMed] [Google Scholar]
  13. Pollegioni L., Butò S., Tischer W., Ghisla S., Pilone M. S. Characterization of D-amino acid oxidase from Trigonopsis variabilis. Biochem Mol Biol Int. 1993 Nov;31(4):709–717. [PubMed] [Google Scholar]
  14. SENTHESHANMUGANATHAN S., NICKERSON W. J. Transaminase and D-amino acid oxidase of Trigonopsis variabilis. J Gen Microbiol. 1962 Mar;27:465–471. doi: 10.1099/00221287-27-3-465. [DOI] [PubMed] [Google Scholar]
  15. Serizawa N., Nakagawa K., Haneishi T., Kamimura S., Naito A. Enzymatic conversion of cephamycin C by D-amino acid oxidase from Trigonopsis variabilis. J Antibiot (Tokyo) 1980 Jun;33(6):585–590. doi: 10.7164/antibiotics.33.585. [DOI] [PubMed] [Google Scholar]
  16. Sikora L., Marzluf G. A. Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol Gen Genet. 1982;186(1):33–39. doi: 10.1007/BF00422908. [DOI] [PubMed] [Google Scholar]
  17. Szwajcer-Dey E., Miller J. R., Kovacevic S., Mosbach K. Characterization of a D-amino acid oxidase with high activity against cephalosporin C from the yeast Trigonopsis variabilis. Biochem Int. 1990;20(6):1169–1178. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES