Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jun;62(6):2122–2132. doi: 10.1128/aem.62.6.2122-2132.1996

Automated Systems for Identification of Heterotrophic Marine Bacteria on the Basis of Their Fatty Acid Composition

S Bertone, M Giacomini, C Ruggiero, C Piccarolo, L Calegari
PMCID: PMC1388878  PMID: 16535340

Abstract

The fatty acid methyl ester composition of a total of 71 marine strains representing the genera Alteromonas, Deleya, Oceanospirillum, and Vibrio was determined by gas-liquid chromatographic analysis. Over 70 different fatty acids were found. The predominant fatty acids were 16:0, 16:1 cis 9, summed-in-feature (SIF) 4 (15:0 iso 2OH and/or 16:1 trans 9) and SIF 7 (18:1 cis 11, 18:1 trans 9, and/or 18:1 trans 6) for all the strains considered, but minor quantitative variations could be used to distinguish the different genera. In addition to a conventional statistical processing method to analyze the data and draw comparison between species and genera, an approach involving neutral network-based elaboration is applied. The statistical analysis and dendrogram representation gave a comparison of the species considered, while the neural network computation provided a more accurate assignment of species to their genera. Moreover, by using neural networks, it was possible to conclude that only 22 fatty acids were important for the identification of the marine genera considered. A database of Alteromonas, Deleya, Oceanospirillum, and Vibrio fatty acid methyl ester profiles was generated and is now routinely used to identify fresh marine isolates.

Full Text

The Full Text of this article is available as a PDF (914.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL K., DESCHMERTZING H., PETERSON J. I. CLASSIFICATION OF MICROORGANISMS BY ANALYSIS OF CHEMICAL COMPOSITION. I. FEASIBILITY OF UTILIZING GAS CHROMATOGRAPHY. J Bacteriol. 1963 May;85:1039–1044. doi: 10.1128/jb.85.5.1039-1044.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breschel T. S., Singleton F. L. Use of the API rapid NFT system for identifying nonfermentative and fermentative marine bacteria. Appl Environ Microbiol. 1992 Jan;58(1):21–26. doi: 10.1128/aem.58.1.21-26.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bøe B., Gjerde J. Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae. J Gen Microbiol. 1980 Jan;116(1):41–49. doi: 10.1099/00221287-116-1-41. [DOI] [PubMed] [Google Scholar]
  4. Drucker D. B. Chemotaxonomic fatty-acid fingerprints of some streptococci with subsequent statistical analysis. Can J Microbiol. 1974 Dec;20(12):1723–1728. doi: 10.1139/m74-266. [DOI] [PubMed] [Google Scholar]
  5. Eerola E., Lehtonen O. P. Optimal data processing procedure for automatic bacterial identification by gas-liquid chromatography of cellular fatty acids. J Clin Microbiol. 1988 Sep;26(9):1745–1753. doi: 10.1128/jcm.26.9.1745-1753.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guckert J. B., Ringelberg D. B., White D. C., Hanson R. S., Bratina B. J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol. 1991 Nov;137(11):2631–2641. doi: 10.1099/00221287-137-11-2631. [DOI] [PubMed] [Google Scholar]
  7. Jantzen E., Bergan T., Bovre K. Gas chromatography of bacterial whole cell methanolysates; VI. Fatty acid composition of strains within Micrococcaceae;. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):785–798. [PubMed] [Google Scholar]
  8. Jantzen E., Bryn K., Bergan T., Bovre K. Gas chromatography of bacterial whole cell methanolysates; V. Fatty acid composition of Neisseriae and Moraxellae. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):767–779. doi: 10.1111/j.1699-0463.1974.tb02374.x. [DOI] [PubMed] [Google Scholar]
  9. Lechevalier M. P. Lipids in bacterial taxonomy - a taxonomist's view. CRC Crit Rev Microbiol. 1977;5(2):109–210. doi: 10.3109/10408417709102311. [DOI] [PubMed] [Google Scholar]
  10. Osterhout G. J., Shull V. H., Dick J. D. Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol. 1991 Sep;29(9):1822–1830. doi: 10.1128/jcm.29.9.1822-1830.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rainey P. B., Thompson I. P., Palleroni N. J. Genome and fatty acid analysis of Pseudomonas stutzeri. Int J Syst Bacteriol. 1994 Jan;44(1):54–61. doi: 10.1099/00207713-44-1-54. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES