Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2317–2323. doi: 10.1128/aem.62.7.2317-2323.1996

Effect of Added Heavy Metal Ions on Biotransformation and Biodegradation of 2-Chlorophenol and 3-Chlorobenzoate in Anaerobic Bacterial Consortia

C Kuo, B Genthner
PMCID: PMC1388889  PMID: 16535351

Abstract

The effect of added Cd(II), Cu(II), Cr(VI), or Hg(II) at 0.01 to 100 ppm on metabolism in anaerobic bacterial consortia which degrade 2-chlorophenol (2CP), 3-chlorobenzoate (3CB), phenol, and benzoate was examined. Three effects were observed, including extended acclimation periods (0.1 to 2.0 ppm), reduced dechlorination or biodegradation rates (0.1 to 2.0 ppm), and failure to dechlorinate or biodegrade the target compound (0.5 to 5.0 ppm). 3CB biodegradation was most sensitive to Cd(II) and Cr(VI). Biodegradation of benzoate and phenol was most sensitive to Cu(II) and Hg(II), respectively. Adding Cr(VI) at 0.01 ppm increased biodegradation rates of phenol (177%) and benzoate (169%), while Cd(II) and Cu(II) at 0.01 ppm enhanced biodegradation rates of benzoate (185%) and 2CP (168%), respectively. Interestingly, with Hg(II) at 1.0 to 2.0 ppm, 2CP and 3CB were biodegraded 133 to 154% faster than controls after an extended acclimation period, suggesting adaptation to Hg(II). Metal ions were added at inhibitory, but sublethal, concentrations to investigate effects on metabolic intermediates and end products. Phenol accumulated to concentrations higher than those in controls only in the 2CP consortium with added Cu(II) at 1.2 ppm but was subsequently degraded. There was no effect on benzoate, and little effect on acetate intermediates was observed. In most cases, methane yields were reduced by 23 to 97%. Thus, dehalogenation, aromatic degradation, and methanogenesis in these anaerobic consortia showed differential sensitivities to the heavy metal ions added. These data indicate that the presence of heavy metals can affect the outcome of anaerobic bioremediation of aromatic pollutants. In addition, a potential exists to use combinations of anaerobic bacterial species to bioremediate sites contaminated with both heavy metals and aromatic pollutants.

Full Text

The Full Text of this article is available as a PDF (279.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barkay T. Adaptation of aquatic microbial communities to hg stress. Appl Environ Microbiol. 1987 Dec;53(12):2725–2732. doi: 10.1128/aem.53.12.2725-2732.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Capone D. G., Reese D. D., Kiene R. P. Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Appl Environ Microbiol. 1983 May;45(5):1586–1591. doi: 10.1128/aem.45.5.1586-1591.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole J. R., Cascarelli A. L., Mohn W. W., Tiedje J. M. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl Environ Microbiol. 1994 Oct;60(10):3536–3542. doi: 10.1128/aem.60.10.3536-3542.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Compeau G. C., Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985 Aug;50(2):498–502. doi: 10.1128/aem.50.2.498-502.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Genthner B. R., Price W. A., Pritchard P. H. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions. Appl Environ Microbiol. 1989 Jun;55(6):1466–1471. doi: 10.1128/aem.55.6.1466-1471.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Genthner B. R., Price W. A., Pritchard P. H. Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol. 1989 Jun;55(6):1472–1476. doi: 10.1128/aem.55.6.1472-1476.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Genthner B. R., Townsend G. T., Chapman P. J. Anaerobic transformation of phenol to benzoate via para-carboxylation: use of fluorinated analogues to elucidate the mechanism of transformation. Biochem Biophys Res Commun. 1989 Aug 15;162(3):945–951. doi: 10.1016/0006-291x(89)90764-x. [DOI] [PubMed] [Google Scholar]
  9. Lovley D. R. Dissimilatory metal reduction. Annu Rev Microbiol. 1993;47:263–290. doi: 10.1146/annurev.mi.47.100193.001403. [DOI] [PubMed] [Google Scholar]
  10. Madsen T., Licht D. Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol. 1992 Sep;58(9):2874–2878. doi: 10.1128/aem.58.9.2874-2878.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sterritt R. M., Lester J. N. Interactions of heavy metals with bacteria. Sci Total Environ. 1980 Jan;14(1):5–17. doi: 10.1016/0048-9697(80)90122-9. [DOI] [PubMed] [Google Scholar]
  13. Stevens T. O., Linkfield T. G., Tiedje J. M. Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl Environ Microbiol. 1988 Dec;54(12):2938–2943. doi: 10.1128/aem.54.12.2938-2943.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES