Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2435–2442. doi: 10.1128/aem.62.7.2435-2442.1996

Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules

J E Hallsworth, N Magan
PMCID: PMC1388892  PMID: 16535354

Abstract

The growth and conidial physiology of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus were studied under different conditions. The effects of culture age (up to 120 days), temperature (5 to 35(deg)C), and pH (2.9 to 11.1) were determined. Growth was optimal at pH 5 to 8 for each isolate and between 20 and 35(deg)C, depending on the isolate. The predominant polyol in conidia was mannitol, with up to 39, 134, and 61 mg g of conidia(sup-1) for B. bassiana, M. anisopliae, and P. farinosus, respectively. Conidia of M. anisopliae contained relatively small amounts of lower-molecular-weight polyols and trehalose (less than 25 mg g(sup-1) in total) in all treatments. Conidia of B. bassiana and P. farinosus contained up to 30, 32, and 25 mg of glycerol, erythritol, and trehalose, respectively, g(sup-1), depending on the treatment. Conidia of P. farinosus contained unusually high amounts of glycerol and erythritol at pH 2.9. The apparent effect of pH on gene expression is discussed in relation to the induction of a water stress response. To our knowledge, this is the first report of polyols and trehalose in fungal propagules produced over a range of temperature or pH. Some conditions and harvesting times were associated with an apparent inhibition of synthesis or accumulation of polyols and trehalose. This shows that culture age and environmental conditions affect the physiological quality of inoculum and can thereby determine its potential for biocontrol.

Full Text

The Full Text of this article is available as a PDF (342.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken W. B., Niederpruem D. J. Isotopic studies of carbohydrate metabolism during basidiospore germination in Schizophyllum commune. II. Changes in specifically labeled glucose and sugar alcohol utilization. Arch Mikrobiol. 1973;88(4):331–344. doi: 10.1007/BF00409944. [DOI] [PubMed] [Google Scholar]
  2. Attfield P. V., Kletsas S., Hazell B. W. Concomitant appearance of intrinsic thermotolerance and storage of trehalose in Saccharomyces cerevisiae during early respiratory phase of batch-culture is CIF1-dependent. Microbiology. 1994 Oct;140(Pt 10):2625–2632. doi: 10.1099/00221287-140-10-2625. [DOI] [PubMed] [Google Scholar]
  3. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  4. Chirife J., Favetto G., Ferro Fontán C. Microbial growth at reduced water activities: some physicochemical properties of compatible solutes. J Appl Bacteriol. 1984 Apr;56(2):259–268. doi: 10.1111/j.1365-2672.1984.tb01346.x. [DOI] [PubMed] [Google Scholar]
  5. Colaço C., Sen S., Thangavelu M., Pinder S., Roser B. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology (N Y) 1992 Sep;10(9):1007–1011. doi: 10.1038/nbt0992-1007. [DOI] [PubMed] [Google Scholar]
  6. Crowe J. H., Crowe L. M., Carpenter J. F., Rudolph A. S., Wistrom C. A., Spargo B. J., Anchordoguy T. J. Interactions of sugars with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):367–384. doi: 10.1016/0304-4157(88)90015-9. [DOI] [PubMed] [Google Scholar]
  7. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  8. Dijkema C., Kester H. C., Visser J. 13C NMR studies of carbon metabolism in the hyphal fungus Aspergillus nidulans. Proc Natl Acad Sci U S A. 1985 Jan;82(1):14–18. doi: 10.1073/pnas.82.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eleutherio E. C., Araujo P. S., Panek A. D. Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta. 1993 Mar 21;1156(3):263–266. doi: 10.1016/0304-4165(93)90040-f. [DOI] [PubMed] [Google Scholar]
  10. Hallsworth J. E., Magan N. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology. 1995 May;141(Pt 5):1109–1115. doi: 10.1099/13500872-141-5-1109. [DOI] [PubMed] [Google Scholar]
  11. Hegedus D. D., Khachatourians G. G. The impact of biotechnology on hyphomycetous fungal insect biocontrol agents. Biotechnol Adv. 1995;13(3):455–490. doi: 10.1016/0734-9750(95)02006-o. [DOI] [PubMed] [Google Scholar]
  12. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 1988 Feb 26;52(4):569–584. doi: 10.1016/0092-8674(88)90470-9. [DOI] [PubMed] [Google Scholar]
  13. Joshi L., St Leger R. J., Bidochka M. J. Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiol Lett. 1995 Jan 15;125(2-3):211–217. doi: 10.1111/j.1574-6968.1995.tb07360.x. [DOI] [PubMed] [Google Scholar]
  14. Karem K., Foster J. W. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol. 1993 Oct;10(1):75–86. doi: 10.1111/j.1365-2958.1993.tb00905.x. [DOI] [PubMed] [Google Scholar]
  15. Kiyosawa K. Volumetric properties of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol and mannitol) in relation to their membrane permeability: group additivity and estimation of the maximum radius of their molecules. Biochim Biophys Acta. 1991 May 7;1064(2):251–255. doi: 10.1016/0005-2736(91)90309-v. [DOI] [PubMed] [Google Scholar]
  16. Marín S., Sanchis V., Magan N. Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol. 1995 Dec;41(12):1063–1070. doi: 10.1139/m95-149. [DOI] [PubMed] [Google Scholar]
  17. Mizushima T., Natori S., Sekimizu K. Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mol Gen Genet. 1993 Apr;238(1-2):1–5. doi: 10.1007/BF00279523. [DOI] [PubMed] [Google Scholar]
  18. da Costa M. S., Niederpruem D. J. Temporal accumulation of mannitol and arabitol in Geotrichum candidum. Arch Microbiol. 1980 May;126(1):57–64. doi: 10.1007/BF00421891. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES