Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2449–2456. doi: 10.1128/aem.62.7.2449-2456.1996

The Composition of Fluorescent Pseudomonad Populations Associated with Roots Is Influenced by Plant and Soil Type

X Latour, T Corberand, G Laguerre, F Allard, P Lemanceau
PMCID: PMC1388893  PMID: 16535355

Abstract

Populations of fluorescent pseudomonads isolated from an uncultivated soil and from the roots of two plant species were previously shown to differ (P. Lemanceau, T. Corberand, L. Gardan, X. Latour, G. Laguerre, J.-M. Boeufgras, and C. Alabouvette, Appl. Environ. Microbiol. 61:1004-1012, 1995). The diversities of fluorescent pseudomonads, from two uncultivated soils and from the roots of two plant species cultivated in these two soils, were compared. The phenotypic diversity of the bacterial isolates was characterized on the basis of biochemical and physiological tests and on the basis of their ability to utilize 147 different organic compounds. The genotypic diversity of the isolates was characterized on the basis of the types of 16S genes coding for rRNA (rDNA), their repetitive extragenic palindromic patterns by PCR, and plasmid profiles. Taxonomic identification of the isolates was achieved with both biochemical and physiological tests and by comparing their 16S rDNA types to those of reference and type strains of fluorescent Pseudomonas spp. Numerical analysis of phenotypic characteristics allowed the clustering of isolates that showed high levels of similarity. This analysis indicated that both soil type and host plant had an effect on the diversity of fluorescent pseudomonads. However, of the two factors studied, the soil was clearly the dominating one. Indeed, the populations associated with the roots of each plant species varied from one soil to the other. This variation could possibly be ascribed to the differences recorded between the phenotypically diverse populations of fluorescent pseudomonads from the two uncultivated soils. The plant selection was, at least partly, plant specific. It was not related to bacterial species and biovars or to the presence of plasmid DNA. The phenotypic clustering of isolates was well correlated with genotypic characterization by repetitive extragenic palindrome-PCR fingerprinting.

Full Text

The Full Text of this article is available as a PDF (322.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett E. L., Solanes R. E., Tang J. S., Palleroni N. J. Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrotrophic pseudomonads associated with food spoilage. J Gen Microbiol. 1986 Oct;132(10):2709–2721. doi: 10.1099/00221287-132-10-2709. [DOI] [PubMed] [Google Scholar]
  2. Burkardt B., Burkardt H. J. Visualization and exact molecular weight determination of a Rhizobium meliloti megaplasmid. J Mol Biol. 1984 May 15;175(2):213–218. doi: 10.1016/0022-2836(84)90475-3. [DOI] [PubMed] [Google Scholar]
  3. Champion A. B., Barrett E. L., Palleroni N. J., Soderberg K. L., Kunisawa R., Contopoulou R., Wilson A. C., Doudoroff M. Evolution in Pseudomonas fluorescens. J Gen Microbiol. 1980 Oct;120(2):485–511. doi: 10.1099/00221287-120-2-485. [DOI] [PubMed] [Google Scholar]
  4. Clays-Josserand A., Lemanceau P., Philippot L., Lensi R. Influence of Two Plant Species (Flax and Tomato) on the Distribution of Nitrogen Dissimilative Abilities within Fluorescent Pseudomonas spp. Appl Environ Microbiol. 1995 May;61(5):1745–1749. doi: 10.1128/aem.61.5.1745-1749.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook R. J., Thomashow L. S., Weller D. M., Fujimoto D., Mazzola M., Bangera G., Kim D. S. Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4197–4201. doi: 10.1073/pnas.92.10.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Descamps P., Véron M. Une méthode de choix des caractères d'identification basée sur le théorème de Bayes et la mesure de l'information. Ann Microbiol (Paris) 1981 Sep-Oct;132B(2):157–170. [PubMed] [Google Scholar]
  7. Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
  8. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  9. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laguerre G., Rigottier-Gois L., Lemanceau P. Fluorescent Pseudomonas species categorized by using polymerase chain reaction (PCR)/restriction fragment analysis of 16S rDNA. Mol Ecol. 1994 Oct;3(5):479–487. doi: 10.1111/j.1365-294x.1994.tb00126.x. [DOI] [PubMed] [Google Scholar]
  11. Lelliott R. A., Billing E., Hayward A. C. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966 Dec;29(3):470–489. doi: 10.1111/j.1365-2672.1966.tb03499.x. [DOI] [PubMed] [Google Scholar]
  12. Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J., Alabouvette C. Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads. Appl Environ Microbiol. 1995 Mar;61(3):1004–1012. doi: 10.1128/aem.61.3.1004-1012.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Linton D., Dewhirst F. E., Clewley J. P., Owen R. J., Burnens A. P., Stanley J. Two types of 16S rRNA gene are found in Campylobacter helveticus: analysis, applications and characterization of the intervening sequence found in some strains. Microbiology. 1994 Apr;140(Pt 4):847–855. doi: 10.1099/00221287-140-4-847. [DOI] [PubMed] [Google Scholar]
  14. Mylvaganam S., Dennis P. P. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics. 1992 Mar;130(3):399–410. doi: 10.1093/genetics/130.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sands D. C., Rovira A. D. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. J Appl Bacteriol. 1971 Mar;34(1):261–275. doi: 10.1111/j.1365-2672.1971.tb02285.x. [DOI] [PubMed] [Google Scholar]
  16. Simon R., Hötte B., Klauke B., Kosier B. Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. J Bacteriol. 1991 Feb;173(4):1502–1508. doi: 10.1128/jb.173.4.1502-1508.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  18. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991 Jan;173(2):697–703. doi: 10.1128/jb.173.2.697-703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES