Abstract
The initial metabolites in the degradation of pyrene, anthracene, fluorene, and dibenzothiophene by Pleurotus ostreatus were isolated by high-pressure liquid chromatography and characterized by UV-visible, gas-chromatographic, mass-spectrometric, and (sup1)H nuclear magnetic resonance spectral techniques. The metabolites from pyrene, dibenzothiophene, anthracene, and fluorene amounted to 45, 84, 64, and 96% of the total organic-solvent-extractable metabolites, respectively. Pyrene was metabolized predominantly to pyrene trans-4,5-dihydrodiol. Anthracene was metabolized predominantly to anthracene trans-1,2-dihydrodiol and 9,10-anthraquinone. In contrast, fluorene and dibenzothiophene were oxidized at the aliphatic bridges instead of the aromatic rings. Fluorene was oxidized to 9-fluorenol and 9-fluorenone; dibenzothiophene was oxidized to the sulfoxide and sulfone. Circular dichroism spectroscopy revealed that the major enantiomer of anthracene trans-1,2-dihydrodiol was predominantly in the S,S configuration and the major enantiomer of the pyrene trans-4,5-dihydrodiol was predominantly R,R. These results indicate that the white rot fungus P. ostreatus initially metabolizes polycyclic aromatic hydrocarbons by reactions similar to those previously reported for nonligninolytic fungi. However, P. ostreatus, in contrast to nonligninolytic fungi, can mineralize these polycyclic aromatic hydrocarbons. The identity of the dihydrodiol metabolites implicates a cytochrome P-450 monooxygenase mechanism.
Full Text
The Full Text of this article is available as a PDF (283.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barclay C. D., Farquhar G. F., Legge R. L. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 1995 Mar;42(6):958–963. doi: 10.1007/BF00191197. [DOI] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Cerniglia C. E. Mineralization of Polycyclic Aromatic Hydrocarbons by the White Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jan;62(1):292–295. doi: 10.1128/aem.62.1.292-295.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jul;62(7):2547–2553. doi: 10.1128/aem.62.7.2547-2553.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogan B. W., Lamar R. T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Jul;61(7):2631–2635. doi: 10.1128/aem.61.7.2631-2635.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodkorb T. S., Legge R. L. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Sep;58(9):3117–3121. doi: 10.1128/aem.58.9.3117-3121.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
- Casillas R. P., Crow S. A., Jr, Heinze T. M., Deck J., Cerniglia C. E. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol. 1996 Apr;16(4):205–215. doi: 10.1007/BF01570023. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Campbell W. L., Fu P. P., Freeman J. P., Evans F. E. Stereoselective fungal metabolism of methylated anthracenes. Appl Environ Microbiol. 1990 Mar;56(3):661–668. doi: 10.1128/aem.56.3.661-668.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerniglia C. E., Kelly D. W., Freeman J. P., Miller D. W. Microbial metabolism of pyrene. Chem Biol Interact. 1986 Feb;57(2):203–216. doi: 10.1016/0009-2797(86)90038-4. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Yang S. K. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol. 1984 Jan;47(1):119–124. doi: 10.1128/aem.47.1.119-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu P. L., Yang S. K. Metabolism of 7,8-dihydrobenzo(a)pyrene by rat liver microsomal enzymes and mutagenicity of metabolites. Cancer Res. 1986 Oct;46(10):5084–5094. [PubMed] [Google Scholar]
- Dhawale S. W., Dhawale S. S., Dean-Ross D. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol. 1992 Sep;58(9):3000–3006. doi: 10.1128/aem.58.9.3000-3006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans F. E., Deck J., Howard P. C. Structure of phenolic isomers of 2- and 3-nitrofluoranthene studied by one- and two-dimensional 1H NMR spectroscopy. Comparative analysis of mutagenicity. Chem Res Toxicol. 1994 May-Jun;7(3):352–357. doi: 10.1021/tx00039a012. [DOI] [PubMed] [Google Scholar]
- Field J. A., de Jong E., Feijoo Costa G., de Bont J. A. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol. 1992 Jul;58(7):2219–2226. doi: 10.1128/aem.58.7.2219-2226.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Green B., Gai W. Z. Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10605–10608. doi: 10.1073/pnas.88.23.10605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerem Z., Friesem D., Hadar Y. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Apr;58(4):1121–1127. doi: 10.1128/aem.58.4.1121-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert M., Kremer S., Sterner O., Anke H. Metabolism of Pyrene by the Basidiomycete Crinipellis stipitaria and Identification of Pyrenequinones and Their Hydroxylated Precursors in Strain JK375. Appl Environ Microbiol. 1994 Oct;60(10):3597–3601. doi: 10.1128/aem.60.10.3597-3601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange B., Kremer S., Sterner O., Anke H. Pyrene Metabolism in Crinipellis stipitaria: Identification of trans-4,5-Dihydro-4,5-Dihydroxypyrene and 1-Pyrenylsulfate in Strain JK364. Appl Environ Microbiol. 1994 Oct;60(10):3602–3607. doi: 10.1128/aem.60.10.3602-3607.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Launen L., Pinto L., Wiebe C., Kiehlmann E., Moore M. The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Can J Microbiol. 1995 Jun;41(6):477–488. doi: 10.1139/m95-064. [DOI] [PubMed] [Google Scholar]
- Moen M. A., Hammel K. E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus. Appl Environ Microbiol. 1994 Jun;60(6):1956–1961. doi: 10.1128/aem.60.6.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pothuluri J. V., Freeman J. P., Evans F. E., Cerniglia C. E. Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl Environ Microbiol. 1993 Jun;59(6):1977–1980. doi: 10.1128/aem.59.6.1977-1980.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sack U., Günther T. Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol. 1993;33(4):269–277. doi: 10.1002/jobm.3620330411. [DOI] [PubMed] [Google Scholar]
- Schlenk D., Bevers R. J., Vertino A. M., Cerniglia C. E. P450 catalysed S-oxidation of dibenzothiophene by Cunninghamella elegans. Xenobiotica. 1994 Nov;24(11):1077–1083. doi: 10.3109/00498259409038667. [DOI] [PubMed] [Google Scholar]
- Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Tungeln L. S., Fu P. P. Stereoselective metabolism of 9-methyl-, 9-hydroxymethyl- and 9,10-dimethylanthracenes: absolute configurations and optical purities of trans-dihydrodiol metabolites. Carcinogenesis. 1986 Jul;7(7):1135–1141. doi: 10.1093/carcin/7.7.1135. [DOI] [PubMed] [Google Scholar]
- Wunder T., Kremer S., Sterner O., Anke H. Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Appl Microbiol Biotechnol. 1994 Dec;42(4):636–641. doi: 10.1007/BF00173932. [DOI] [PubMed] [Google Scholar]