Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2560–2566. doi: 10.1128/aem.62.7.2560-2566.1996

Raindrop Momentum Triggers Growth of Leaf-Associated Populations of Pseudomonas syringae on Field-Grown Snap Bean Plants

S S Hirano, L S Baker, C D Upper
PMCID: PMC1388900  PMID: 16535362

Abstract

Observational and microclimate modification experiments were conducted under field conditions to determine the role of the physical environment in effecting large increases in phyllosphere population sizes of Pseudomonas syringae pv. syringae, the causal agent of bacterial brown spot disease of snap bean (Phaseolus vulgaris L.). Comparisons of daily changes in population sizes of P. syringae on three plantings of snap bean cultivar Cascade and one of cultivar Eagle with weather conditions indicated a strong association of rainfalls with periods of 1 to 3 days in duration during which increases in bacterial population sizes were greater than 10-fold and up to 1,000-fold. The effects of rain on populations of P. syringae were explored further by modifying the microclimate of bean plants in the field with polyethylene shelters to shield plants from rain and fine-mesh inert screens to modify the momentum of raindrops. After each of three separate intense rains, the greater-than-10-fold increases in population sizes of P. syringae observed on plants exposed to the rains did not occur on plants in the shelters or under the screens. The screens decreased the velocity and, thus, the momentum of raindrops but not the volume or quality of rainwater that fell on plants under the screens. Thus, the absence of increases in population sizes of P. syringae on plants under the screens suggests that raindrop momentum plays a role in the growth-triggering effect of intense rains on populations of P. syringae on bean plants under field conditions.

Full Text

The Full Text of this article is available as a PDF (305.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie G. A., Lindow S. E. Comparison of the Behavior of Epiphytic Fitness Mutants of Pseudomonas syringae under Controlled and Field Conditions. Appl Environ Microbiol. 1994 Oct;60(10):3799–3808. doi: 10.1128/aem.60.10.3799-3808.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gross D. C., Cody Y. S., Proebsting E. L., Radamaker G. K., Spotts R. A. Distribution, population dynamics, and characteristics of ice nucleation-active bacteria in deciduous fruit tree orchards. Appl Environ Microbiol. 1983 Dec;46(6):1370–1379. doi: 10.1128/aem.46.6.1370-1379.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hirano S. S., Baker L. S., Upper C. D. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury. Plant Physiol. 1985 Feb;77(2):259–265. doi: 10.1104/pp.77.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hirano S. S., Upper C. D. Diel Variation in Population Size and Ice Nucleation Activity of Pseudomonas syringae on Snap Bean Leaflets. Appl Environ Microbiol. 1989 Mar;55(3):623–630. doi: 10.1128/aem.55.3.623-630.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  6. Lindow S. E., Arny D. C., Upper C. D. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 1982 Oct;70(4):1084–1089. doi: 10.1104/pp.70.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maki L. R., Galyan E. L., Chang-Chien M. M., Caldwell D. R. Ice nucleation induced by pseudomonas syringae. Appl Microbiol. 1974 Sep;28(3):456–459. doi: 10.1128/am.28.3.456-459.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wilson M., Lindow S. E. Coexistence among Epiphytic Bacterial Populations Mediated through Nutritional Resource Partitioning. Appl Environ Microbiol. 1994 Dec;60(12):4468–4477. doi: 10.1128/aem.60.12.4468-4477.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wilson M., Lindow S. E. Ecological Similarity and Coexistence of Epiphytic Ice-Nucleating (Ice) Pseudomonas syringae Strains and a Non-Ice-Nucleating (Ice) Biological Control Agent. Appl Environ Microbiol. 1994 Sep;60(9):3128–3137. doi: 10.1128/aem.60.9.3128-3137.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wilson M., Lindow S. E. Effect of phenotypic plasticity on epiphytic survival and colonization by Pseudomonas syringae. Appl Environ Microbiol. 1993 Feb;59(2):410–416. doi: 10.1128/aem.59.2.410-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES