Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2586–2592. doi: 10.1128/aem.62.7.2586-2592.1996

Purification by Immunoaffinity Chromatography, Characterization, and Structural Analysis of a Thermostable Pyranose Oxidase from the White Rot Fungus Phlebiopsis gigantea

A Schafer, S Bieg, A Huwig, G Kohring, F Giffhorn
PMCID: PMC1388902  PMID: 16535364

Abstract

A moderately thermostable pyranose oxidase (PROD) was purified to apparent homogeneity with a yield of 71% from mycelium extracts of the white rot fungus Phlebiopsis gigantea by an efficient three-step procedure that included heat treatment, immunoaffinity chromatography, and gel filtration on Superdex 200. PROD of P. gigantea is a glycoprotein with a pI between pH 5.3 and 5.7. The relative molecular weight (M(infr)) of native PROD is 295,600 (plusmn) 5% as determined by four independent methods. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PROD revealed two distinct but similar stained bands corresponding to polypeptides with M(infr)s of 77,000 and 70,000, suggesting a heterotetrameric enzyme structure. The tetrameric structure of PROD was confirmed by electron microscopic examinations, which additionally showed the ellipsoidal shape (4.6 by 10 nm) of each subunit. Spectral analyses and direct determinations showed the presence of covalently bound flavin adenine dinucleotide with a stoichiometry of 3.12 mol/mol of enzyme. A broad pH optimum was determined in the range pH 5.0 to 8.0 in 100 mM sodium phosphate, and the activation energy for d-glucose oxidation was 24.7 kJ/mol. The main substrates of PROD are d-glucose, l-sorbose, and d-xylose, for which K(infm) values 1.2, 16.5, and 22.2 mM were determined, respectively. PROD showed high stability during storage. In 100 mM sodium phosphate (pH 6.0 to 8.0), the half-life of PROD activity was >300 days at 40(deg)C, >110 days at 50(deg)C (pH 7.0), and 1 h at 65(deg)C.

Full Text

The Full Text of this article is available as a PDF (827.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L. -O., Borg H., Mikaelsson M. Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 1972 Feb 1;20(2):199–202. doi: 10.1016/0014-5793(72)80793-2. [DOI] [PubMed] [Google Scholar]
  2. Barbieri L., Zamboni M., Lorenzoni E., Montanaro L., Sperti S., Stirpe F. Inhibition of protein synthesis in vitro by proteins from the seeds of Momordica charantia (bitter pear melon). Biochem J. 1980 Feb 15;186(2):443–452. doi: 10.1042/bj1860443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brühmüller M., Möhler H., Decker K. Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacter oxidans. Purification and properties of D-6-hydroxynicotine oxidase. Eur J Biochem. 1972 Aug 18;29(1):143–151. doi: 10.1111/j.1432-1033.1972.tb01968.x. [DOI] [PubMed] [Google Scholar]
  4. Daniel G., Volc J., Kubatova E. Pyranose Oxidase, a Major Source of H(2)O(2) during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol. 1994 Jul;60(7):2524–2532. doi: 10.1128/aem.60.7.2524-2532.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Danneel H. J., Rössner E., Zeeck A., Giffhorn F. Purification and characterization of a pyranose oxidase from the basidiomycete Peniophora gigantea and chemical analyses of its reaction products. Eur J Biochem. 1993 Jun 15;214(3):795–802. doi: 10.1111/j.1432-1033.1993.tb17982.x. [DOI] [PubMed] [Google Scholar]
  6. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  7. Gabriel J., Volc J., Kubátová E., Palková Z., Pospísek M. A convenient laboratory procedure for the preparation of cortalcerone, a fungal antibiotic beta-pyrone. Carbohydr Res. 1994 Jan 15;252:297–301. doi: 10.1016/0008-6215(94)90025-6. [DOI] [PubMed] [Google Scholar]
  8. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  9. Janssen F. W., Ruelius H. W. Pyranose oxidase from Polyporus obtusus. Methods Enzymol. 1975;41:170–173. doi: 10.1016/s0076-6879(75)41041-2. [DOI] [PubMed] [Google Scholar]
  10. Koths K., Halenbeck R., Moreland M. Synthesis of the antibiotic cortalcerone from D-glucose using pyranose 2-oxidase and a novel fungal enzyme, aldos-2-ulose dehydratase. Carbohydr Res. 1992 Jul 20;232(1):59–75. doi: 10.1016/s0008-6215(00)90994-7. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  14. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  15. OUCHTERLONY O. Antigen-antibody reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta Pathol Microbiol Scand. 1953;32(2):230–240. [PubMed] [Google Scholar]
  16. SWOBODA B. E., MASSEY V. PURIFICATION AND PROPERTIES OF THE GLUCOSE OXIDASE FROM ASPERGILLUS NIGER. J Biol Chem. 1965 May;240:2209–2215. [PubMed] [Google Scholar]
  17. Shin K. S., Youn H. D., Han Y. H., Kang S. O., Hah Y. C. Purification and characterisation of D-glucose oxidase from white-rot fungus Pleurotus ostreatus. Eur J Biochem. 1993 Aug 1;215(3):747–752. doi: 10.1111/j.1432-1033.1993.tb18088.x. [DOI] [PubMed] [Google Scholar]
  18. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  19. Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
  20. Yabuuchi M., Masuda M., Katoh K., Nakamura T., Akanuma H. Simple enzymatic method for determining 1,5-anhydro-D-glucitol in plasma for diagnosis of diabetes mellitus. Clin Chem. 1989 Oct;35(10):2039–2043. [PubMed] [Google Scholar]
  21. Yoshimura T., Isemura T. Subunit structure of glucose oxidase from Penicillium amagasakiense. J Biochem. 1971 May;69(5):839–846. doi: 10.1093/oxfordjournals.jbchem.a129535. [DOI] [PubMed] [Google Scholar]
  22. Zipper P., Kratky O., Herrmann R., Hohn T. An x-ray small angle study of the bacteriophages fr and R17. Eur J Biochem. 1971 Jan 1;18(1):1–9. doi: 10.1111/j.1432-1033.1971.tb01206.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES