Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Aug;62(8):2747–2752. doi: 10.1128/aem.62.8.2747-2752.1996

Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus

M Ohkuma, S Noda, R Usami, K Horikoshi, T Kudo
PMCID: PMC1388910  PMID: 16535372

Abstract

The diversity of nitrogen-fixing organisms in the symbiotic intestinal microflora of a lower termite, Reticulitermes speratus, was investigated without culturing the resident microorganisms. Fragments of the nifH gene, which encodes the dinitrogenase reductase, were directly amplified from the DNA of the mixed microbial population in the termite gut and were clonally isolated. The phylogenetic analysis of the nifH product amino acid sequences showed that there was a remarkable diversity of nitrogenase genes in the termite gut. A large number of the termite nifH sequences were most closely related to those of a firmicute, Clostridium pasteurianum, with a few being most closely related to either the (gamma) subclass of the proteobacteria or a sequence of Desulfovibrio gigas. Some of the others were distantly related to those of the bacteria and were seemingly derived from the domain Archaea. The phylogenetic positions of these nifH sequences corresponded to those of genera found during a previous determination of rRNA-based phylogeny of the termite intestinal microbial community, of which a majority consisted of new, yet-uncultivated species. The results revealed that we have little knowledge of the organisms responsible for nitrogen fixation in termites.

Full Text

The Full Text of this article is available as a PDF (318.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Porath J., Zehr J. P. Detection and characterization of cyanobacterial nifH genes. Appl Environ Microbiol. 1994 Mar;60(3):880–887. doi: 10.1128/aem.60.3.880-887.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benemann J. R. Nitrogen fixation in termites. Science. 1973 Jul 13;181(4095):164–165. doi: 10.1126/science.181.4095.164. [DOI] [PubMed] [Google Scholar]
  4. Breznak J. A., Brill W. J., Mertins J. W., Coppel H. C. Nitrogen fixation in termites. Nature. 1973 Aug 31;244(5418):577–580. doi: 10.1038/244577a0. [DOI] [PubMed] [Google Scholar]
  5. Breznak J. A. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol. 1982;36:323–343. doi: 10.1146/annurev.mi.36.100182.001543. [DOI] [PubMed] [Google Scholar]
  6. French J. R., Turner G. L., Bradbury J. F. Nitrogen fixation by bacteria from the hindgut of termites. J Gen Microbiol. 1976 Aug;96(2):202–206. doi: 10.1099/00221287-95-2-202. [DOI] [PubMed] [Google Scholar]
  7. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  8. Kent H. M., Buck M., Evans D. J. Cloning and sequencing of the nifH gene of Desulfovibrio gigas. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):73–78. doi: 10.1016/0378-1097(89)90173-0. [DOI] [PubMed] [Google Scholar]
  9. Kirshtein J. D., Paerl H. W., Zehr J. Amplification, cloning, and sequencing of a nifH segment from aquatic microorganisms and natural communities. Appl Environ Microbiol. 1991 Sep;57(9):2645–2650. doi: 10.1128/aem.57.9.2645-2650.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kopczynski E. D., Bateson M. M., Ward D. M. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol. 1994 Feb;60(2):746–748. doi: 10.1128/aem.60.2.746-748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Normand P., Bousquet J. Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol. 1989 Nov;29(5):436–447. doi: 10.1007/BF02602914. [DOI] [PubMed] [Google Scholar]
  12. Ohkuma M., Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol. 1996 Feb;62(2):461–468. doi: 10.1128/aem.62.2.461-468.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohkuma M., Noda S., Horikoshi K., Kudo T. Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett. 1995 Dec 1;134(1):45–50. doi: 10.1111/j.1574-6968.1995.tb07912.x. [DOI] [PubMed] [Google Scholar]
  14. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–365. doi: 10.1146/annurev.mi.40.100186.002005. [DOI] [PubMed] [Google Scholar]
  15. Potrikus C. J., Breznak J. A. Nitrogen-fixing Enterobacter agglomerans isolated from guts of wood-eating termites. Appl Environ Microbiol. 1977 Feb;33(2):392–399. doi: 10.1128/aem.33.2.392-399.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  17. Ueda T., Suga Y., Yahiro N., Matsuguchi T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol. 1995 Mar;177(5):1414–1417. doi: 10.1128/jb.177.5.1414-1417.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zehr J. P., Mellon M., Braun S., Litaker W., Steppe T., Paerl H. W. Diversity of heterotrophic nitrogen fixation genes in a marine cyanobacterial mat. Appl Environ Microbiol. 1995 Jul;61(7):2527–2532. doi: 10.1128/aem.61.7.2527-2532.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES