Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3238–3244. doi: 10.1128/aem.62.9.3238-3244.1996

Mechanism and Regulation of Isoleucine Excretion in Corynebacterium glutamicum

T Hermann, R Kramer
PMCID: PMC1388935  PMID: 16535397

Abstract

Whole cells of Corynebacterium glutamicum were loaded with high cytoplasmic l-isoleucine concentrations, and isoleucine excretion from these cells was studied in terms of mechanism and regulation. The transmembrane isoleucine flux could be differentiated into carrier-mediated uptake, carrier-mediated excretion, and diffusion. After discrimination from the other transmembrane solute movements, the outward-directed flux, which was due to the activity of the isoleucine excretion carrier, was characterized with respect to its energy dependence and its regulation at the level of expression. Isoleucine excretion was shown to function as a secondary transport process, driven by the membrane potential and coupled to the movement of protons, presumably with a stoichiometry of 2:1 (H(sup+)/isoleucine). Of a variety of putative transport substrates, only leucine was able to compete for isoleucine at the cis (cytosolic) side of the export carrier. Cytoplasmic isoleucine concentrations higher than 20 mM induce the activity of the isoleucine excretion system. This effect is specific for isoleucine and is inhibited by the presence of chloramphenicol. Apart from leucine, other amino acids and related amino acid analogs are not able to induce isoleucine excretion. The complex pattern of regulation of the isoleucine excretion system at the level of activity and expression is shown to be related to the pattern of regulation of the isoleucine uptake system in C. glutamicum in terms of physiological significance.

Full Text

The Full Text of this article is available as a PDF (239.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bröer S., Eggeling L., Krämer R. Strains of Corynebacterium glutamicum with Different Lysine Productivities May Have Different Lysine Excretion Systems. Appl Environ Microbiol. 1993 Jan;59(1):316–321. doi: 10.1128/aem.59.1.316-321.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bröer S., Krämer R. Lysine excretion by Corynebacterium glutamicum. 1. Identification of a specific secretion carrier system. Eur J Biochem. 1991 Nov 15;202(1):131–135. doi: 10.1111/j.1432-1033.1991.tb16353.x. [DOI] [PubMed] [Google Scholar]
  3. Bröer S., Krämer R. Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem. 1991 Nov 15;202(1):137–143. doi: 10.1111/j.1432-1033.1991.tb16354.x. [DOI] [PubMed] [Google Scholar]
  4. Colón G. E., Nguyen T. T., Jetten M. S., Sinskey A. J., Stephanopoulos G. Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol. 1995 Jul;43(3):482–488. doi: 10.1007/BF00218453. [DOI] [PubMed] [Google Scholar]
  5. Driessen A. J., de Jong S., Konings W. N. Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris. J Bacteriol. 1987 Nov;169(11):5193–5200. doi: 10.1128/jb.169.11.5193-5200.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ebbighausen H., Weil B., Krämer R. Transport of branched-chain amino acids in Corynebacterium glutamicum. Arch Microbiol. 1989;151(3):238–244. doi: 10.1007/BF00413136. [DOI] [PubMed] [Google Scholar]
  7. Eikmanns B. J., Eggeling L., Sahm H. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek. 1993;64(2):145–163. doi: 10.1007/BF00873024. [DOI] [PubMed] [Google Scholar]
  8. Hoshino T. Transport systems for branched-chain amino acids in Pseudomonas aeruginosa. J Bacteriol. 1979 Sep;139(3):705–712. doi: 10.1128/jb.139.3.705-712.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones B. N., Gilligan J. P. o-Phthaldialdehyde precolumn derivatization and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J Chromatogr. 1983 Aug 26;266:471–482. doi: 10.1016/s0021-9673(01)90918-5. [DOI] [PubMed] [Google Scholar]
  10. Krämer R., Lambert C. Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur J Biochem. 1990 Dec 27;194(3):937–944. doi: 10.1111/j.1432-1033.1990.tb19489.x. [DOI] [PubMed] [Google Scholar]
  11. Miyajima R., Shiio I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VI. Effects of isoleucine and valine on threonine dehydratase activity and its formation. J Biochem. 1972 Jun;71(6):951–960. doi: 10.1093/oxfordjournals.jbchem.a129866. [DOI] [PubMed] [Google Scholar]
  12. Morbach S., Sahm H., Eggeling L. Use of Feedback-Resistant Threonine Dehydratases of Corynebacterium glutamicum To Increase Carbon Flux towards l-Isoleucine. Appl Environ Microbiol. 1995 Dec;61(12):4315–4320. doi: 10.1128/aem.61.12.4315-4320.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nazos P. M., Antonucci T. K., Landick R., Oxender D. L. Cloning and characterization of livH, the structural gene encoding a component of the leucine transport system in Escherichia coli. J Bacteriol. 1986 May;166(2):565–573. doi: 10.1128/jb.166.2.565-573.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  15. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  16. Zaritsky A., Kihara M., Macnab R. M. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol. 1981;63(3):215–231. doi: 10.1007/BF01870983. [DOI] [PubMed] [Google Scholar]
  17. Zittrich S., Krämer R. Quantitative discrimination of carrier-mediated excretion of isoleucine from uptake and diffusion in Corynebacterium glutamicum. J Bacteriol. 1994 Nov;176(22):6892–6899. doi: 10.1128/jb.176.22.6892-6899.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES