Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3366–3370. doi: 10.1128/aem.62.9.3366-3370.1996

Comparison of the Efficacies of Chloromethane, Methionine, and S-Adenosylmethionine as Methyl Precursors in the Biosynthesis of Veratryl Alcohol and Related Compounds in Phanerochaete chrysosporium

D B Harper, W C McRoberts, J T Kennedy
PMCID: PMC1388942  PMID: 16535404

Abstract

The effect on veratryl alcohol production of supplementing cultures of the lignin-degrading fungus Phanerochaete chrysosporium with different methyl-(sup2)H(inf3)-labelled methyl precursors has been investigated. Both chloromethane (CH(inf3)Cl) and l-methionine caused earlier initiation of veratryl alcohol biosynthesis, but S-adenosyl-l-methionine (SAM) retarded the formation of the compound. A high level of C(sup2)H(inf3) incorporation into both the 3- and 4-O-methyl groups of veratryl alcohol occurred when either l-[methyl-(sup2)H(inf3)]methionine or C(sup2)H(inf3)Cl was present, but no significant labelling was detected when S-adenosyl-l-[methyl-(sup2)H(inf3)]methionine was added. Incorporation of C(sup2)H(inf3) from C(sup2)H(inf3)Cl was strongly antagonized by the presence of unlabelled l-methionine; conversely, incorporation of C(sup2)H(inf3) from l-[methyl-(sup2)H(inf3)]methionine was reduced by CH(inf3)Cl. These results suggest that l-methionine is converted either directly or via an intermediate to CH(inf3)Cl, which is utilized as a methyl donor in veratryl alcohol biosynthesis. SAM is not an intermediate in the conversion of l-methionine to CH(inf3)Cl. In an attempt to identify the substrates for O methylation in the metabolic transformation of benzoic acid to veratryl alcohol, the relative activities of the SAM- and CH(inf3)Cl-dependent methylating systems on several possible intermediates were compared in whole mycelia by using isotopic techniques. 4-Hydroxybenzoic acid was a much better substrate for the CH(inf3)Cl-dependent methylation system than for the SAM-dependent system. The CH(inf3)Cl-dependent system also had significantly increased activities toward both isovanillic acid and vanillyl alcohol compared with the SAM-dependent system. On the basis of these results, it is proposed that the conversion of benzoic acid to veratryl alcohol involves para hydroxylation, methylation of 4-hydroxybenzoic acid, meta hydroxylation of 4-methoxybenzoic acid to form isovanillic acid, and methylation of isovanillic acid to yield veratric acid.

Full Text

The Full Text of this article is available as a PDF (187.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akamatsu Y., Ma D. B., Higuchi T., Shimada M. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Lett. 1990 Aug 20;269(1):261–263. doi: 10.1016/0014-5793(90)81169-o. [DOI] [PubMed] [Google Scholar]
  2. Coulter C., Hamilton J. T., Harper D. B. Evidence for the existence of independent chloromethane- and S-adenosylmethionine-utilizing systems for methylation in Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 May;59(5):1461–1466. doi: 10.1128/aem.59.5.1461-1466.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coulter C., Kennedy J. T., McRoberts W. C., Harper D. B. Purification and Properties of an S-Adenosylmethionine: 2,4-Disubstituted Phenol O-Methyltransferase from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Mar;59(3):706–711. doi: 10.1128/aem.59.3.706-711.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haemmerli S. D., Leisola M. S., Sanglard D., Fiechter A. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem. 1986 May 25;261(15):6900–6903. [PubMed] [Google Scholar]
  5. Harper D. B., Buswell J. A., Kennedy J. T., Hamilton J. T. Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi. Appl Environ Microbiol. 1990 Nov;56(11):3450–3457. doi: 10.1128/aem.56.11.3450-3457.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jensen K. A., Evans K. M., Kirk T. K., Hammel K. E. Biosynthetic Pathway for Veratryl Alcohol in the Ligninolytic Fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):709–714. doi: 10.1128/aem.60.2.709-714.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
  8. Popp J. L., Kalyanaraman B., Kirk T. K. Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry. 1990 Nov 20;29(46):10475–10480. doi: 10.1021/bi00498a008. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES