Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3424–3431. doi: 10.1128/aem.62.9.3424-3431.1996

Sulfur Chemistry in Bacterial Leaching of Pyrite

A Schippers, P Jozsa, W Sand
PMCID: PMC1388944  PMID: 16535406

Abstract

In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compounds. In the course of oxidative, chemical pyrite degradation under alkaline conditions, the accumulation of tetrathionate, trithionate, and thiosulfate occurred. The data indicate that thiosulfate, trithionate, tetrathionate, and disulfane-monosulfonic acid are key intermediate sulfur compounds in oxidative pyrite degradation. A novel (cyclic) leaching mechanism is proposed which basically is indirect.

Full Text

The Full Text of this article is available as a PDF (263.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatti T. M., Bigham J. M., Carlson L., Tuovinen O. H. Mineral Products of Pyrrhotite Oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol. 1993 Jun;59(6):1984–1990. doi: 10.1128/aem.59.6.1984-1990.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLMER A. R., TEMPLE K. L., HINKLE M. E. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J Bacteriol. 1950 Mar;59(3):317–328. doi: 10.1128/jb.59.3.317-328.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Olson G. J. Rate of Pyrite Bioleaching by Thiobacillus ferrooxidans: Results of an Interlaboratory Comparison. Appl Environ Microbiol. 1991 Mar;57(3):642–644. doi: 10.1128/aem.57.3.642-644.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Sand W., Rohde K., Sobotke B., Zenneck C. Evaluation of Leptospirillum ferrooxidans for Leaching. Appl Environ Microbiol. 1992 Jan;58(1):85–92. doi: 10.1128/aem.58.1.85-92.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Schippers A., Hallmann R., Wentzien S., Sand W. Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol. 1995 Aug;61(8):2930–2935. doi: 10.1128/aem.61.8.2930-2935.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sugio T., Katagiri T., Moriyama M., Zhèn Y. L., Inagaki K., Tano T. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans. Appl Environ Microbiol. 1988 Jan;54(1):153–157. doi: 10.1128/aem.54.1.153-157.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sugio T., Uemura S., Makino I., Iwahori K., Tano T., Blake R. C. Sensitivity of Iron-Oxidizing Bacteria, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to Bisulfite Ion. Appl Environ Microbiol. 1994 Feb;60(2):722–725. doi: 10.1128/aem.60.2.722-725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tuovinen O. H., Bhatti T. M., Bigham J. M., Hallberg K. B., Garcia O., Lindström E. B. Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Appl Environ Microbiol. 1994 Sep;60(9):3268–3274. doi: 10.1128/aem.60.9.3268-3274.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES