Abstract
Seawater enrichments of marine bacteria clustered in 20- to 50-(mu)m-wide bands near air-water interfaces. The cells within the band travelled at up to 212 (mu)m s(sup-1) and at an average speed of 163 (mu)m s(sup-1). Mean cell speeds peaked mid-run at 187 (mu)m s(sup-1). At the end of the run, bacteria reversed direction rather than randomly reorienting. The duration of the stops during reversal was estimated at 18 ms, six to seven times shorter than that found in enteric bacteria. Cells hundreds of micrometers from the band travelled at half the speed of the bacteria in the band. The fastest isolate from the seawater enrichment was identified as Shewanella putrefaciens and had an average speed of 100 (mu)m s(sup-1) in culture. Air-water interfaces produced no clustering or speed changes in isolates derived from enrichments. Salinity and pH, however, both influenced speed. The speed and reversal times of the seawater enrichments indicate that the bacteria in them are better adapted for clustering around small point sources of nutrients than are either enteric or cultured marine bacteria.
Full Text
The Full Text of this article is available as a PDF (329.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973 Jan;74(1):77–91. doi: 10.1099/00221287-74-1-77. [DOI] [PubMed] [Google Scholar]
- Adler J. Chemotaxis in bacteria. Science. 1966 Aug 12;153(3737):708–716. doi: 10.1126/science.153.3737.708. [DOI] [PubMed] [Google Scholar]
- Alldredge A. L., Cohen Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science. 1987 Feb 6;235(4789):689–691. doi: 10.1126/science.235.4789.689. [DOI] [PubMed] [Google Scholar]
- Atsumi T., McCarter L., Imae Y. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature. 1992 Jan 9;355(6356):182–184. doi: 10.1038/355182a0. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature. 1972 Oct 27;239(5374):500–504. doi: 10.1038/239500a0. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Confer D. R., Logan B. E. Increased bacterial uptake of macromolecular substrates with fluid shear. Appl Environ Microbiol. 1991 Nov;57(11):3093–3100. doi: 10.1128/aem.57.11.3093-3100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenbach M., Wolf A., Welch M., Caplan S. R., Lapidus I. R., Macnab R. M., Aloni H., Asher O. Pausing, switching and speed fluctuation of the bacterial flagellar motor and their relation to motility and chemotaxis. J Mol Biol. 1990 Feb 5;211(3):551–563. doi: 10.1016/0022-2836(90)90265-N. [DOI] [PubMed] [Google Scholar]
- Fung D. C., Berg H. C. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature. 1995 Jun 29;375(6534):809–812. doi: 10.1038/375809a0. [DOI] [PubMed] [Google Scholar]
- Harshey R. M. Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol. 1994 Aug;13(3):389–394. doi: 10.1111/j.1365-2958.1994.tb00433.x. [DOI] [PubMed] [Google Scholar]
- Liu Z., Papadopoulos K. D. Unidirectional motility of Escherichia coli in restrictive capillaries. Appl Environ Microbiol. 1995 Oct;61(10):3567–3572. doi: 10.1128/aem.61.10.3567-3572.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S. Very fast flagellar rotation. Nature. 1994 Oct 27;371(6500):752–752. doi: 10.1038/371752b0. [DOI] [PubMed] [Google Scholar]
- Malmcrona-Friberg K., Goodman A., Kjelleberg S. Chemotactic Responses of Marine Vibrio sp. Strain S14 (CCUG 15956) to Low-Molecular-Weight Substances under Starvation and Recovery Conditions. Appl Environ Microbiol. 1990 Dec;56(12):3699–3704. doi: 10.1128/aem.56.12.3699-3704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. G., Martinez-Alonso M., Lalucat J., Esteve I., Brown S. Velocity changes, long runs, and reversals in the Chromatium minus swimming response. J Bacteriol. 1991 Feb;173(3):997–1003. doi: 10.1128/jb.173.3.997-1003.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. G., Pearson L., Bonazinga A., Dillon S., Khouri H., Paxinos R. Long lag times and high velocities in the motility of natural assemblages of marine bacteria. Appl Environ Microbiol. 1995 Mar;61(3):877–882. doi: 10.1128/aem.61.3.877-882.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell J. G., Pearson L., Dillon S., Kantalis K. Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations. Appl Environ Microbiol. 1995 Dec;61(12):4436–4440. doi: 10.1128/aem.61.12.4436-4440.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature. 1982 Apr 29;296(5860):855–857. doi: 10.1038/296855a0. [DOI] [PubMed] [Google Scholar]
- Williams F. D., Schwarzhoff R. H. Nature of the swarming phenomenon in Proteus. Annu Rev Microbiol. 1978;32:101–122. doi: 10.1146/annurev.mi.32.100178.000533. [DOI] [PubMed] [Google Scholar]