Abstract
Spores from Cry(sup+) strains of Bacillus thuringiensis bound fluorescein isothiocyanate-labeled antibodies specific for the 65-kDa activated Cry 1Ac toxin, whereas spores from Bacillus cereus and Cry(sup-) strains of B. thuringiensis did not. The Cry(sup+) spores could be activated for germination by alkaline conditions (pH 10.3), whereas Cry(sup-) spores could not. Once the surrounding exosporia had been removed or permeabilized, Cry(sup+) spores were able to bind the toxin receptor(s) from insect gut brush border membrane vesicle preparations, and their germination rates were increased ca. threefold in the presence of brush border membrane vesicles. A model is presented whereby in the soil the Cry toxins on the spore surface are protected by the exosporium while in the gut they are exposed and available for binding to the insect receptors. This model explains why the disulfide-rich C terminus of the cry genes is so highly conserved even though it is removed during the processing of the protoxin to the activated toxin. It also highlights the trade-off resulting from having Cry toxins located on the spore surface, i.e., decreased spore resistance versus enhanced insect pathogenesis.
Full Text
The Full Text of this article is available as a PDF (468.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ang B. J., Nickerson K. W. Purification of the protein crystal from Bacillus thuringiensis by zonal gradient centrifugation. Appl Environ Microbiol. 1978 Oct;36(4):625–626. doi: 10.1128/aem.36.4.625-626.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. I., Beckman W., Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiol Rev. 1986 Mar;50(1):1–24. doi: 10.1128/mr.50.1.1-24.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. I., Fitz-James P. C. Properties of Bacillus cereus spore coat mutants. J Bacteriol. 1975 Jul;123(1):354–365. doi: 10.1128/jb.123.1.354-365.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. I., Tyrell D. J., Fitz-James P. C., Bulla L. A., Jr Relationship of the syntheses of spore coat protein and parasporal crystal protein in Bacillus thuringiensis. J Bacteriol. 1982 Jul;151(1):399–410. doi: 10.1128/jb.151.1.399-410.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benoit T. G., Wilson G. R., Bull D. L., Aronson A. I. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light. Appl Environ Microbiol. 1990 Aug;56(8):2282–2286. doi: 10.1128/aem.56.8.2282-2286.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantwell G. E., Franklin B. A. Inactivation by irradiation of spores of Bacillus thuringiensis var. thuringiensis. J Invertebr Pathol. 1966 Jun;8(2):256–258. doi: 10.1016/0022-2011(66)90139-x. [DOI] [PubMed] [Google Scholar]
- Du C., Martin P. A., Nickerson K. W. Comparison of Disulfide Contents and Solubility at Alkaline pH of Insecticidal and Noninsecticidal Bacillus thuringiensis Protein Crystals. Appl Environ Microbiol. 1994 Oct;60(10):3847–3853. doi: 10.1128/aem.60.10.3847-3853.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERHARDT P., RIBI E. ULTRASTRUCTURE OF THE EXOSPORIUM ENVELOPING SPORES OF BACILLUS CEREUS. J Bacteriol. 1964 Dec;88:1774–1789. doi: 10.1128/jb.88.6.1774-1789.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerhardt P., Pankratz H. S., Scherrer R. Fine structure of the Baccilus thuringiensis spore. Appl Environ Microbiol. 1976 Sep;32(3):438–440. doi: 10.1128/aem.32.3.438-440.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griego V. M., Spence K. D. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol. 1978 May;35(5):906–910. doi: 10.1128/aem.35.5.906-910.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEIMPEL A. M., ANGUS T. A. Bacterial insecticides. Bacteriol Rev. 1960 Sep;24(3):266–288. doi: 10.1128/br.24.3.266-288.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecadet M. M., Chevrier G., Dedonder R. Analysis of a protein fraction in the spore coats of Bacillus thuringiensis. Comparison with crystal protein. Eur J Biochem. 1972 Feb 15;25(2):349–358. doi: 10.1111/j.1432-1033.1972.tb01703.x. [DOI] [PubMed] [Google Scholar]
- Martin P. A., Travers R. S. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates. Appl Environ Microbiol. 1989 Oct;55(10):2437–2442. doi: 10.1128/aem.55.10.2437-2442.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matz L. L., Beaman T. C., Gerhardt P. Chemical composition of exosporium from spores of Bacillus cereus. J Bacteriol. 1970 Jan;101(1):196–201. doi: 10.1128/jb.101.1.196-201.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson W. L. Photoreactivation in the genus Bacillus. Curr Microbiol. 1995 Dec;31(6):361–364. doi: 10.1007/BF00294700. [DOI] [PubMed] [Google Scholar]
- Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POWELL J. F. Factors affecting the germination of thick suspensions of bacillus subtilis spores in L-alanine solution. J Gen Microbiol. 1950 Sep;4(3):330–338. doi: 10.1099/00221287-4-3-330. [DOI] [PubMed] [Google Scholar]
- Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
- Schesser J. H., Bulla L. A., Jr Toxicity of Bacillus thuringiensis spores to the tobacco hornworm, Manduca sexta. Appl Environ Microbiol. 1978 Jan;35(1):121–123. doi: 10.1128/aem.35.1.121-123.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow P. I will survive: protecting and repairing spore DNA. J Bacteriol. 1992 May;174(9):2737–2741. doi: 10.1128/jb.174.9.2737-2741.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short J. A., Walker P. D., Thomson R. O., Somerville H. J. The fine structure of Bacillus finitimus and Bacillus thuringiensis spores with special reference to the location of crystal antigen. J Gen Microbiol. 1974 Oct;84(2):261–276. doi: 10.1099/00221287-84-2-261. [DOI] [PubMed] [Google Scholar]
- Somerville H. J., Pockett H. V. An insect toxin from spores of Bacillus thuringiensis and Bacillus cereus. J Gen Microbiol. 1975 Apr;87(2):359–369. doi: 10.1099/00221287-87-2-359. [DOI] [PubMed] [Google Scholar]
- Stahly D. P., Dingman D. W., Bulla L. A., Jr, Aronson A. I. Possible origin and function of the parasporal crystal in Bacillus thuringiensis. Biochem Biophys Res Commun. 1978 Oct 16;84(3):581–588. doi: 10.1016/0006-291x(78)90745-3. [DOI] [PubMed] [Google Scholar]
- Travers R. S., Martin P. A., Reichelderfer C. F. Selective Process for Efficient Isolation of Soil Bacillus spp. Appl Environ Microbiol. 1987 Jun;53(6):1263–1266. doi: 10.1128/aem.53.6.1263-1266.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
- Walther C. J., Couche G. A., Pfannenstiel M. A., Egan S. E., Bivin L. A., Nickerson K. W. Analysis of mosquito larvicidal potential exhibited by vegetative cells of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 1986 Oct;52(4):650–653. doi: 10.1128/aem.52.4.650-653.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Fitz-James P. C., Aronson A. I. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J Bacteriol. 1993 Jun;175(12):3757–3766. doi: 10.1128/jb.175.12.3757-3766.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]