Abstract
We surveyed our collection of psychrophilic bacteria to determine the types of phosphatases they produce and whether any had heat-labile activities with potential applications. Assays at different temperatures showed that the activity from one isolate was optimal at 45(deg)C and decreased dramatically above 55(deg)C. This isolate, D10, had the rod-coccus morphological cycle and cell wall amino acids associated with members of the Arthrobacter genus. Interestingly, we found that this strain made two extracellular phosphatases that could be separated by ammonium sulfate fractionation and migration during polyacrylamide gel electrophoresis. One enzyme, designated D10A, hydrolyzed both X-phos (5-bromo-4-chloro-3-indolyl phosphate) and para-nitrophenyl phosphate as substrates and had activity over a broad pH range of 7 to 11. The second enzyme, D10B, lacked activity against X-phos and had a narrow pH range of about 8 to 9. In addition, the D10B enzyme required calcium for activity. The levels of activity of both enzymes decreased for cells grown in media containing more than 100 (mu)M P(infi). These results not only demonstrate the existence of different enzymes from one Arthrobacter strain but also suggest ways in which other studies may have missed phosphatases with unknown requirements.
Full Text
The Full Text of this article is available as a PDF (540.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Fiedler F., Schleifer K., Kandler O. Amino acid sequence of the threonine-containing mureins of coryneform bacteria. J Bacteriol. 1973 Jan;113(1):8–17. doi: 10.1128/jb.113.1.8-17.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitt P. S., Peterkin P. I. Isolation and properties of a small manganese-ion-stimulated bacterial alkaline phosphatase. Biochem J. 1976 Jul 1;157(1):161–167. doi: 10.1042/bj1570161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glew R. H., Heath E. C. Studies on the extracellular alkaline phosphatase of Micrococcus sodonensis. I. Isolation and characterization. J Biol Chem. 1971 Mar 25;246(6):1556–1565. [PubMed] [Google Scholar]
- Glew R. H., Heath E. C. Studies on the extracellular alkaline phosphatase of Micrococcus sodonensis. II. Factors affecting secretion. J Biol Chem. 1971 Mar 25;246(6):1566–1574. [PubMed] [Google Scholar]
- Goldman S., Hecht K., Eisenberg H., Mevarech M. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui. J Bacteriol. 1990 Dec;172(12):7065–7070. doi: 10.1128/jb.172.12.7065-7070.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulett F. M., Bookstein C., Jensen K. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):735–740. doi: 10.1128/jb.172.2.735-740.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulett F. M., Kim E. E., Bookstein C., Kapp N. V., Edwards C. W., Wyckoff H. W. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J Biol Chem. 1991 Jan 15;266(2):1077–1084. [PubMed] [Google Scholar]
- Hulett F. M., Wang P. Z., Sussman M., Lee J. W. Two alkaline phosphatase genes positioned in tandem in Bacillus licheniformis MC14 require different RNA polymerase holoenzymes for transcription. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1035–1039. doi: 10.1073/pnas.82.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakita T., Yamamoto A., Hioki N., Kobori Y., Tamaya R. [Clinical evaluation of enzyme-immunoassay for insulin (author's transl)]. Horumon To Rinsho. 1980 Jul;28(7):833–838. [PubMed] [Google Scholar]
- Kobori H., Sullivan C. W., Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria: Rapid 5' end-labeling of nucleic acids. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6691–6695. doi: 10.1073/pnas.81.21.6691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lo K. J., Lee S. D., Tsai Y. T., Wu T. C., Chan C. Y., Chen G. H., Yeh C. L. Long-term immunogenicity and efficacy of hepatitis B vaccine in infants born to HBeAg-positive HBsAg-carrier mothers. Hepatology. 1988 Nov-Dec;8(6):1647–1650. doi: 10.1002/hep.1840080629. [DOI] [PubMed] [Google Scholar]
- Loveland J., Gutshall K., Kasmir J., Prema P., Brenchley J. E. Characterization of psychrotrophic microorganisms producing beta-galactosidase activities. Appl Environ Microbiol. 1994 Jan;60(1):12–18. doi: 10.1128/aem.60.1.12-18.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris V., Chen M., Goldberg M., Voskuil J., McGurk G., Holland I. B. Calcium in bacteria: a solution to which problem? Mol Microbiol. 1991 Apr;5(4):775–778. doi: 10.1111/j.1365-2958.1991.tb00748.x. [DOI] [PubMed] [Google Scholar]
- Queiroz-Claret C., Meunier J. C. Staining technique for phosphatases in polyacrylamide gels. Anal Biochem. 1993 Mar;209(2):228–231. doi: 10.1006/abio.1993.1112. [DOI] [PubMed] [Google Scholar]
- Schaffel S. D., Hulett F. M. Alkaline phosphatase from Bacillus licheniformis. Solubility dependent on magnesium, purification and characterization. Biochim Biophys Acta. 1978 Oct 12;526(2):457–467. doi: 10.1016/0005-2744(78)90137-7. [DOI] [PubMed] [Google Scholar]
- Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokol P. A., Ohman D. E., Iglewski B. H. A more sensitive plate assay for detection of protease production by Pseudomanas aeruginosa. J Clin Microbiol. 1979 Apr;9(4):538–540. doi: 10.1128/jcm.9.4.538-540.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan A. S., Worobec E. A. Isolation and characterization of two immunochemically distinct alkaline phosphatases from Pseudomonas aeruginosa. FEMS Microbiol Lett. 1993 Feb 1;106(3):281–286. doi: 10.1111/j.1574-6968.1993.tb05977.x. [DOI] [PubMed] [Google Scholar]
- Vincent J. B., Crowder M. W., Averill B. A. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992 Mar;17(3):105–110. doi: 10.1016/0968-0004(92)90246-6. [DOI] [PubMed] [Google Scholar]
- Yamane K., Maruo B. Alkaline phosphatase possessing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis. J Bacteriol. 1978 Apr;134(1):108–114. doi: 10.1128/jb.134.1.108-114.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamane K., Maruo B. Purification and characterization of extracellular soluble and membrane-bound insoluble alkaline phosphatases possessing phosphodiesterase activities in Bacillus subtilis. J Bacteriol. 1978 Apr;134(1):100–107. doi: 10.1128/jb.134.1.100-107.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Tigerstrom R. G. Production of two phosphatases by Lysobacter enzymogenes and purification and characterization of the extracellular enzyme. Appl Environ Microbiol. 1984 Apr;47(4):693–698. doi: 10.1128/aem.47.4.693-698.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]