Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Oct;62(10):3814–3817. doi: 10.1128/aem.62.10.3814-3817.1996

Novel Metabolic Transformation Pathway for Cyclic Imides in Blastobacter sp. Strain A17p-4

J Ogawa, C L Soong, M Honda, S Shimizu
PMCID: PMC1388964  PMID: 16535426

Abstract

The metabolic transformation pathway for cyclic imides in microorganisms was studied in Blastobacter sp. strain A17p-4. This novel pathway involves, in turn, hydrolytic ring opening of a cyclic imide to yield a monoamidated dicarboxylate, hydrolytic deamidation of the monoamidated dicarboxylate to yield a dicarboxylate, and dicarboxylate transformation similar to that in the tricarboxylic acid cycle. The initial step is catalyzed by a novel enzyme, imidase. Imidase and subsequent enzymes involved in this metabolic pathway are induced by some cyclic imides, such as succinimide and glutarimide. Induced cells metabolize various cyclic imides.

Full Text

The Full Text of this article is available as a PDF (240.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dudley K. H., Bius D. L., Waldrop C. D. Urinary metabolites of N-methyl-alpha-methyl-alpha-phenysuccinimide (methsuximide) in the dog. Drug Metab Dispos. 1974 Mar-Apr;2(2):113–122. [PubMed] [Google Scholar]
  2. Dudley K. H., Butler T. C., Bius D. L. The role of dihydropyrimidinase in the metabolism of some hydantoin and succinimide drugs. Drug Metab Dispos. 1974 Mar-Apr;2(2):103–112. [PubMed] [Google Scholar]
  3. Maguire J. H., Dudley K. H. Dihydropyrimidinase. Metabolism of some cyclic imides of different ring size. Drug Metab Dispos. 1978 Mar-Apr;6(2):140–145. [PubMed] [Google Scholar]
  4. Maguire J. H., Dudley K. H. Partial purification and characterization of dihydropyrimidinases from calf and rat liver. Drug Metab Dispos. 1978 Sep-Oct;6(5):601–605. [PubMed] [Google Scholar]
  5. Ogawa J., Chung M. C., Hida S., Yamada H., Shimizu S. Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization. J Biotechnol. 1994 Nov 30;38(1):11–19. doi: 10.1016/0168-1656(94)90143-0. [DOI] [PubMed] [Google Scholar]
  6. Ogawa J., Kim J. M., Nirdnoy W., Amano Y., Yamada H., Shimizu S. Purification and characterization of an ATP-dependent amidohydrolase, N-methylhydantoin amidohydrolase, from Pseudomonas putida 77. Eur J Biochem. 1995 Apr 1;229(1):284–290. doi: 10.1111/j.1432-1033.1995.0284l.x. [DOI] [PubMed] [Google Scholar]
  7. Ogawa J., Miyake H., Shimizu S. Purification and characterization of N-carbamoyl-L-amino acid amidohydrolase with broad substrate specificity from Alcaligenes xylosoxidans. Appl Microbiol Biotechnol. 1995 Nov;43(6):1039–1043. doi: 10.1007/BF00166922. [DOI] [PubMed] [Google Scholar]
  8. Ogawa J., Shimizu S. Beta-ureidopropionase with N-carbamoyl-alpha-L-amino acid amidohydrolase activity from an aerobic bacterium, Pseudomonas putida IFO 12996. Eur J Biochem. 1994 Jul 15;223(2):625–630. doi: 10.1111/j.1432-1033.1994.tb19034.x. [DOI] [PubMed] [Google Scholar]
  9. Ogawa J., Shimizu S. Purification and characterization of dihydroorotase from Pseudomonas putida. Arch Microbiol. 1995 Nov;164(5):353–357. doi: 10.1007/BF02529982. [DOI] [PubMed] [Google Scholar]
  10. Ogawa J., Shimizu S., Yamada H. N-carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c purification and characterization. Eur J Biochem. 1993 Mar 15;212(3):685–691. doi: 10.1111/j.1432-1033.1993.tb17706.x. [DOI] [PubMed] [Google Scholar]
  11. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yang Y. S., Ramaswamy S., Jakoby W. B. Rat liver imidase. J Biol Chem. 1993 May 25;268(15):10870–10875. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES