Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):4044–4048. doi: 10.1128/aem.62.11.4044-4048.1996

Siderophore-Mediated Aluminum Uptake by Bacillus megaterium ATCC 19213

X Hu, G L Boyer
PMCID: PMC1388977  PMID: 16535439

Abstract

The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was the dominant process for aluminum accumulation. At high concentrations of aluminum, passive transport dominated and siderophore production slowed the passive transport of aluminum into the cell. Siderophore production was affected by the aluminum content in the media. High concentrations of aluminum increased production of siderophores in iron-limited cultures, and this production continued into stationary phase. Aluminum did not stimulate siderophore production in iron-replete cultures. The production of siderophores markedly affected aluminum uptake. This has direct implications on the toxicity of heavy metals under iron-deficient conditions.

Full Text

The Full Text of this article is available as a PDF (208.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arceneaux J. E., Boutwell M. E., Byers B. R. Enhancement of copper toxicity by siderophores in Bacillus megaterium. Antimicrob Agents Chemother. 1984 May;25(5):650–652. doi: 10.1128/aac.25.5.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arceneaux J. E., Byers B. R. Ferrisiderophore reductase activity in Bacillus megaterium. J Bacteriol. 1980 Feb;141(2):715–721. doi: 10.1128/jb.141.2.715-721.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arceneaux J. E., Davis W. B., Downer D. N., Haydon A. H., Byers B. R. Fate of labeled hydroxamates during iron transport from hydroxamate-ion chelates. J Bacteriol. 1973 Sep;115(3):919–927. doi: 10.1128/jb.115.3.919-927.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Archibald F. S., Duong M. N. Manganese acquisition by Lactobacillus plantarum. J Bacteriol. 1984 Apr;158(1):1–8. doi: 10.1128/jb.158.1.1-8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beveridge T. J., Forsberg C. W., Doyle R. J. Major sites of metal binding in Bacillus licheniformis walls. J Bacteriol. 1982 Jun;150(3):1438–1448. doi: 10.1128/jb.150.3.1438-1448.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byers B. R., Powell M. V., Lankford C. E. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):286–294. doi: 10.1128/jb.93.1.286-294.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clarke S. E., Stuart J., Sanders-Loehr J. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl Environ Microbiol. 1987 May;53(5):917–922. doi: 10.1128/aem.53.5.917-922.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis W. B., Byers B. R. Active transport of iron in Bacillus megaterium: role of secondary hydroxamic acids. J Bacteriol. 1971 Aug;107(2):491–498. doi: 10.1128/jb.107.2.491-498.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis W. B., McCauley M. J., Byers B. R. Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium. J Bacteriol. 1971 Feb;105(2):589–594. doi: 10.1128/jb.105.2.589-594.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Emery T. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry. 1971 Apr 13;10(8):1483–1488. doi: 10.1021/bi00784a033. [DOI] [PubMed] [Google Scholar]
  11. Fekete F. A., Barton L. L. Effects of iron(III) analogs on growth and pseudobactin synthesis in a chromiumtolerant Pseudomonas isolate. Biol Met. 1991;4(4):211–216. doi: 10.1007/BF01141183. [DOI] [PubMed] [Google Scholar]
  12. Huyer M., Page W. J. Zn Increases Siderophore Production in Azotobacter vinelandii. Appl Environ Microbiol. 1988 Nov;54(11):2625–2631. doi: 10.1128/aem.54.11.2625-2631.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Höfte M., Buysens S., Koedam N., Cornelis P. Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals. 1993 Summer;6(2):85–91. doi: 10.1007/BF00140108. [DOI] [PubMed] [Google Scholar]
  14. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan;160(1):47–56. doi: 10.1016/0003-2697(87)90612-9. [DOI] [PubMed] [Google Scholar]
  15. Shi B., Haug A. Aluminum uptake by neuroblastoma cells. J Neurochem. 1990 Aug;55(2):551–558. doi: 10.1111/j.1471-4159.1990.tb04169.x. [DOI] [PubMed] [Google Scholar]
  16. Tabillion R., Kaltwasser H. Energieabhängige 63Ni-Aufnahme bei Alcaligenes eutrophus Stamm H1 und H16. Arch Microbiol. 1977 May 13;113(1-2):145–151. doi: 10.1007/BF00428595. [DOI] [PubMed] [Google Scholar]
  17. Winkelmann G., Barnekow A., Ilgner D., Zähner H. Stoffwechselprodukte von Mikroorganismen. 120. Eisenaufnahme bei Neurospora crassa. II. Regulation der Sideraminbildung und Inhibition des Eisentransportes durch Metallanaloge des Coprogens. Arch Mikrobiol. 1973;92(4):285–300. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES