Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Nov;62(11):4081–4085. doi: 10.1128/aem.62.11.4081-4085.1996

Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14

O Asaka, M Shoda
PMCID: PMC1388978  PMID: 16535440

Abstract

Bacillus subtilis RB14, which showed antibiotic activities against several phytopathogens in vitro by producing the antibiotics iturin A and surfactin, was subjected to a pot test to investigate its ability to suppress damping-off of tomato seedlings caused by Rhizoctonia solani. To facilitate recovery from soil, B. subtilis RB14-C, a spontaneous streptomycin-resistant mutant of RB14, was used. Damping-off was suppressed when the culture broth, cell suspension, or cell-free culture broth of RB14-C was inoculated into soil. Iturin A and surfactin were recovered from the soils inoculated with the cell suspension of RB14-C, confirming that RB14-C produced them in soil. The gene lpa-14, which was cloned from RB14 and required for the production of both antibiotics, was mutated in RB14-C, and a mutant, R(Delta)1, was constructed. The level of disease suppressibility of R(Delta)1 was low, but R(Delta)1(pC115), a transformant of R(Delta)1 with the plasmid pC115 carrying lpa-14, was restored in suppressibility. These results show that the antibiotics iturin A and surfactin produced by RB14 play a major role in the suppression of damping-off caused by R. solani. RB14-C, R(Delta)1, and R(Delta)1(pC115) persisted in soil during the experimental period and were recovered from the soil, mostly as spores.

Full Text

The Full Text of this article is available as a PDF (211.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carroll H., Moenne-Loccoz Y., Dowling D. N., O'gara F. Mutational Disruption of the Biosynthesis Genes Coding for the Antifungal Metabolite 2,4-Diacetylphloroglucinol Does Not Influence the Ecological Fitness of Pseudomonas fluorescens F113 in the Rhizosphere of Sugarbeets. Appl Environ Microbiol. 1995 Aug;61(8):3002–3007. doi: 10.1128/aem.61.8.3002-3007.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kraus J., Loper J. E. Characterization of a Genomic Region Required for Production of the Antibiotic Pyoluteorin by the Biological Control Agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 1995 Mar;61(3):849–854. doi: 10.1128/aem.61.3.849-854.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Laville J., Voisard C., Keel C., Maurhofer M., Défago G., Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1562–1566. doi: 10.1073/pnas.89.5.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lemanceau P., Bakker P. A., De Kogel W. J., Alabouvette C., Schippers B. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol. 1992 Sep;58(9):2978–2982. doi: 10.1128/aem.58.9.2978-2982.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Liang L. N., Sinclair J. L., Mallory L. M., Alexander M. Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol. 1982 Sep;44(3):708–714. doi: 10.1128/aem.44.3.708-714.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Maget-Dana R., Thimon L., Peypoux F., Ptak M. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie. 1992 Dec;74(12):1047–1051. doi: 10.1016/0300-9084(92)90002-v. [DOI] [PubMed] [Google Scholar]
  7. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S., 3rd Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol. 1992 Aug;58(8):2616–2624. doi: 10.1128/aem.58.8.2616-2624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moller P. C., Yokoyama M., Chang J. P. Ultracytochemical localization of glucose-6-phosphatase in Chang rat hepatoma in vivo and in vitro. J Natl Cancer Inst. 1977 May;58(5):1401–1405. doi: 10.1093/jnci/58.5.1401. [DOI] [PubMed] [Google Scholar]
  9. Silo-Suh L. A., Lethbridge B. J., Raffel S. J., He H., Clardy J., Handelsman J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994 Jun;60(6):2023–2030. doi: 10.1128/aem.60.6.2023-2030.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thomashow L. S., Weller D. M., Bonsall R. F., Pierson L. S. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol. 1990 Apr;56(4):908–912. doi: 10.1128/aem.56.4.908-912.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Thomashow L. S., Weller D. M. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol. 1988 Aug;170(8):3499–3508. doi: 10.1128/jb.170.8.3499-3508.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vincent M. N., Harrison L. A., Brackin J. M., Kovacevich P. A., Mukerji P., Weller D. M., Pierson E. A. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol. 1991 Oct;57(10):2928–2934. doi: 10.1128/aem.57.10.2928-2934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. de la Cruz A. R., Poplawsky A. R., Wiese M. V. Biological suppression of potato ring rot by fluorescent pseudomonads. Appl Environ Microbiol. 1992 Jun;58(6):1986–1991. doi: 10.1128/aem.58.6.1986-1991.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van der Loo R. P., van Gennip E. M., Bakker A. R., Hasman A., Rutten E. F. Effects measured in the evaluation of automated information systems. Medinfo. 1995;8(Pt 2):1081–1085. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES