Abstract
Oxygen-releasing plants may provide aerobic niches in anoxic sediments and soils for ammonia-oxidizing bacteria. The oxygen-releasing, aerenchymatous emergent macrophyte Glyceria maxima had a strong positive effect on numbers and activities of the nitrifying bacteria in its root zone in spring and early summer. The stimulation of the aerobic nitrifying bacteria in the freshwater sediment, ascribed to oxygen release by the roots of G. maxima, disappeared in late summer. Numbers and activities of the nitrifying bacteria were positively correlated, and a positive relationship with denitrification activities also was found. To assess possible adaptations of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats, a comparison was made between the freshwater lake sediment and three soils differing in oxicity profiles. Oxygen kinetics and tolerance to anoxia of the ammonia-oxidizing communities from these habitats were determined. The apparent K(infm) values for oxygen of the ammonia-oxidizing community in the lake sediment were in the range of 5 to 15 (mu)M, which was substantially lower than the range of K(infm) values for oxygen of the ammonia-oxidizing community from a permanently oxic dune location. Upon anoxic incubation, the ammonia-oxidizing communities of dune, chalk grassland, and calcareous grassland soils lost 99, 95, and 92% of their initial nitrifying capacity, respectively. In contrast, the ammonia-oxidizing community in the lake sediment started to nitrify within 1 h upon exposure to oxygen at the level of the initial capacity. It is argued that the conservation of the nitrifying capacity during anoxic periods and the ability to react instantaneously to the presence of oxygen are important traits of nitrifiers in fluctuating oxic-anoxic environments such as the root zone of aerenchymatous plant species.
Full Text
The Full Text of this article is available as a PDF (248.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen P. B., Sørensen J. Temporal variation of denitrification activity in plant-covered, littoral sediment from lake hampen, denmark. Appl Environ Microbiol. 1986 Jun;51(6):1174–1179. doi: 10.1128/aem.51.6.1174-1179.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen K., Revsbech N. P., Nielsen L. P. Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol. 1993 Oct;59(10):3287–3296. doi: 10.1128/aem.59.10.3287-3296.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prosser J. I. Autotrophic nitrification in bacteria. Adv Microb Physiol. 1989;30:125–181. doi: 10.1016/s0065-2911(08)60112-5. [DOI] [PubMed] [Google Scholar]
- Verhagen F. J., Laanbroek H. J. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats. Appl Environ Microbiol. 1991 Nov;57(11):3255–3263. doi: 10.1128/aem.57.11.3255-3263.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]