Abstract
When grown in 700 mM glycerol within the pH range 6.0 to 7.5, anaerobic pH-regulated cultures of Enterobacter agglomerans exhibited an extracellular accumulation of 3-hydroxypropionaldehyde (3-HPA). This phenomenon, which causes fermentation cessation, occurred earlier when pH was low. In contrast, substrate consumption was complete at pH 8. Levels of glycerol-catabolizing enzymes, i.e., glycerol dehydrogenase and dihydroxyacetone kinase for the oxidative route and glycerol dehydratase and 1,3-propanediol dehydrogenase for the reductive route, as well as the nucleotide pools were determined periodically in the pH 7- and pH 8-regulated cultures. A NAD/NADH ratio of 1.7 was correlated with the beginning of the production of the inhibitory metabolite. Further accumulation was dependent on the ratio of glycerol dehydratase activity to 1,3-propanediol dehydrogenase activity. For a ratio higher than 1, 3-HPA was produced until fermentation ceased, which occurred for the pH 7-regulated culture. At pH 8, a value below 1 was noticed and 3-HPA accumulation was transient, while the NAD/NADH ratio decreased. The low rate of glycerol dissimilation following the appearance of 3-HPA in the culture medium was attributed to the strong inhibitory effect exerted by 3-HPA on glycerol dehydrogenase activity.
Full Text
The Full Text of this article is available as a PDF (198.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABELES R. H., BROWNSTEIN A. M., RANDLES C. H. beta-Hydroxypropionaldehyde, an intermediate in the formation of 1,3-propanediol by Aerobacter aerogenes. Biochim Biophys Acta. 1960 Jul 15;41:530–531. doi: 10.1016/0006-3002(60)90054-8. [DOI] [PubMed] [Google Scholar]
- Barbirato F., Grivet J. P., Soucaille P., Bories A. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol. 1996 Apr;62(4):1448–1451. doi: 10.1128/aem.62.4.1448-1451.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouvet O. M., Lenormand P., Carlier J. P., Grimont P. A. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species. Res Microbiol. 1994 Feb;145(2):129–139. doi: 10.1016/0923-2508(94)90006-x. [DOI] [PubMed] [Google Scholar]
- Chevalier M., Lin E. C., Levine R. L. Hydrogen peroxide mediates the oxidative inactivation of enzymes following the switch from anaerobic to aerobic metabolism in Klebsiella pneumoniae. J Biol Chem. 1990 Jan 5;265(1):42–46. [PubMed] [Google Scholar]
- Daniel R., Gottschalk G. Growth temperature-dependent activity of glycerol dehydratase in Escherichia coli expressing the Citrobacter freundii dha regulon. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):281–285. doi: 10.1111/j.1574-6968.1992.tb14053.x. [DOI] [PubMed] [Google Scholar]
- Forage R. G., Foster M. A. Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol. 1982 Feb;149(2):413–419. doi: 10.1128/jb.149.2.413-419.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forage R. G., Lin E. C. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol. 1982 Aug;151(2):591–599. doi: 10.1128/jb.151.2.591-599.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honda S., Toraya T., Fukui S. In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J Bacteriol. 1980 Sep;143(3):1458–1465. doi: 10.1128/jb.143.3.1458-1465.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson B. C., Stroinski A., Schneider Z. Glycerol dehydratase from Aerobacter aerogenes. Methods Enzymol. 1975;42:315–323. doi: 10.1016/0076-6879(75)42134-6. [DOI] [PubMed] [Google Scholar]
- Johnson E. A., Burke S. K., Forage R. G., Lin E. C. Purification and properties of dihydroxyacetone kinase from Klebsiella pneumoniae. J Bacteriol. 1984 Oct;160(1):55–60. doi: 10.1128/jb.160.1.55-60.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson E. A., Levine R. L., Lin E. C. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations. J Bacteriol. 1985 Oct;164(1):479–483. doi: 10.1128/jb.164.1.479-483.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIN E. C., LEVIN A. P., MAGASANIK B. The effect of aerobic metabolism on the inducible glycerol dehydrogenase of Aerobacter aerogenes. J Biol Chem. 1960 Jun;235:1824–1829. [PubMed] [Google Scholar]
- LIN E. C., MAGASANIK B. The activation of glycerol dehydrogenase from Aerobacter aerogenes by monovalent cations. J Biol Chem. 1960 Jun;235:1820–1823. [PubMed] [Google Scholar]
- Lin E. C. Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 1976;30:535–578. doi: 10.1146/annurev.mi.30.100176.002535. [DOI] [PubMed] [Google Scholar]
- MAGASANIK B., BROOKE M. S., KARIBIAN D. Metabolic pathways of glycerol dissimilation; a comparative study of two strains of Aerobacter aerogenes. J Bacteriol. 1953 Nov;66(5):611–619. doi: 10.1128/jb.66.5.611-619.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUSH D., KARIBIAN D., KARNOVSKY M. L., MAGASANIK B. Pathways of glycerol dissimilation in two strains of Aerobacter aerogenes; enzymatic and tracer studies. J Biol Chem. 1957 Jun;226(2):891–899. [PubMed] [Google Scholar]
- Ruch F. E., Jr, Lin E. C., Kowit J. D., Tang C. T., Goldberg A. L. In vivo inactivation of glycerol dehydrogenase in Klebsiella aerogenes: properties of active and inactivated proteins. J Bacteriol. 1980 Mar;141(3):1077–1085. doi: 10.1128/jb.141.3.1077-1085.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruch F. E., Lengeler J., Lin E. C. Regulation of glycerol catabolism in Klebsiella aerogenes. J Bacteriol. 1974 Jul;119(1):50–56. doi: 10.1128/jb.119.1.50-56.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruch F. E., Lin E. C. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J Bacteriol. 1975 Oct;124(1):348–352. doi: 10.1128/jb.124.1.348-352.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talarico T. L., Casas I. A., Chung T. C., Dobrogosz W. J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1988 Dec;32(12):1854–1858. doi: 10.1128/aac.32.12.1854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toraya T., Ushio K., Fukui S., Hogenkamp P. C. Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. J Biol Chem. 1977 Feb 10;252(3):963–970. [PubMed] [Google Scholar]
- Vasconcelos I., Girbal L., Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994 Mar;176(5):1443–1450. doi: 10.1128/jb.176.5.1443-1450.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
