Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4417–4427. doi: 10.1128/aem.62.12.4417-4427.1996

Purification and Characterization of Cellobiose Dehydrogenases from the White Rot Fungus Trametes versicolor

B P Roy, T Dumonceaux, A A Koukoulas, F S Archibald
PMCID: PMC1389000  PMID: 16535462

Abstract

The white rot fungus Trametes versicolor degrades lignocellulosic material at least in part by oxidizing the lignin via a number of secreted oxidative and peroxidative enzymes. An extracellular reductive enzyme, cellobiose dehydrogenase (CDH), oxidizes cellobiose and reduces insoluble Mn(IV)O(inf2), commonly found as dark deposits in decaying wood, to form Mn(III), a powerful lignin-oxidizing agent. CDH also reduces ortho-quinones and produces sugar acids which can promote manganese peroxidase and therefore ligninolytic activity. To better understand the role of CDH in lignin degradation, proteins exhibiting cellobiose-dependent quinone-reducing activity were isolated and purified from cultures of T. versicolor. Two distinct proteins were isolated; the proteins had apparent molecular weights of 97,000 and 81,000 and isoelectric points of 4.2 and 6.4, respectively. The larger CDH (CDH 4.2) contained both flavin and heme cofactors, whereas the smaller contained only a flavin (CDH 6.4). These CDH enzymes were rapidly reduced by cellobiose and lactose and somewhat more slowly by cellulose and certain cello-oligosaccharides. Both glycoproteins were able to reduce a very wide range of quinones and organic radical species but differed in their ability to reduce metal ion complexes. Temperature and pH optima for CDH 4.2 were affected by the reduced substrate. Although CDH 4.2 showed rather high substrate specificity among the ortho-quinones, it could also rapidly reduce a structurally very diverse collection of other species, from negatively charged triiodide ions to positively charged hexaquo ferric ions. CDH 6.4 showed a higher K(infm) and a lower V(infmax) and turnover number than did CDH 4.2 for all substrates tested. Furthermore, CDH 6.4 did not reduce the transition metals Fe(III), Cu(II), and Mn(III) at concentrations likely to be physiologically relevant, while CDH 4.2 was able to rapidly reduce even very low concentrations of these ions. The reduction of Fe(III) and Cu(II) by CDH 4.2 may be important in sustaining a Fenton's-type reaction, which produces hydroxyl radicals that can cleave both lignin and cellulose. Unlike the CDH proteins from Phanerochaete chrysosporium, CDH 4.2 and CDH 6.4 are unable to produce hydrogen peroxide.

Full Text

The Full Text of this article is available as a PDF (291.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addleman K., Archibald F. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor. Appl Environ Microbiol. 1993 Jan;59(1):266–273. doi: 10.1128/aem.59.1.266-273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayers A. R., Ayers S. B., Eriksson K. E. Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem. 1978 Sep 15;90(1):171–181. doi: 10.1111/j.1432-1033.1978.tb12588.x. [DOI] [PubMed] [Google Scholar]
  3. Bao W., Renganathan V. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett. 1992 May 4;302(1):77–80. doi: 10.1016/0014-5793(92)80289-s. [DOI] [PubMed] [Google Scholar]
  4. Bao W., Usha S. N., Renganathan V. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1993 Feb 1;300(2):705–713. doi: 10.1006/abbi.1993.1098. [DOI] [PubMed] [Google Scholar]
  5. Bourin M. C., Lindahl U. Functional role of the polysaccharide component of rabbit thrombomodulin proteoglycan. Effects on inactivation of thrombin by antithrombin, cleavage of fibrinogen by thrombin and thrombin-catalysed activation of factor V. Biochem J. 1990 Sep 1;270(2):419–425. doi: 10.1042/bj2700419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Coudray M. R., Canevascini G., Meier H. Characterization of a cellobiose dehydrogenase in the cellulolytic fungus Sporotrichum (Chrysosporium) thermophile. Biochem J. 1982 Apr 1;203(1):277–284. doi: 10.1042/bj2030277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eriksson K. E., Pettersson B., Westermark U. Oxidation: an important enzyme reaction in fungal degradation of cellulose. FEBS Lett. 1974 Dec 15;49(2):282–285. doi: 10.1016/0014-5793(74)80531-4. [DOI] [PubMed] [Google Scholar]
  9. Glossmann H., Neville D. M., Jr Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat. J Biol Chem. 1971 Oct 25;246(20):6339–6346. [PubMed] [Google Scholar]
  10. Green T. R. Significance of glucose oxidase in lignin degradation. Nature. 1977 Jul 7;268(5615):78–80. doi: 10.1038/268078a0. [DOI] [PubMed] [Google Scholar]
  11. HALLIWELL G. CATALYTIC DECOMPOSITION OF CELLULOSE UNDER BIOLOGICAL CONDITIONS. Biochem J. 1965 Apr;95:35–40. doi: 10.1042/bj0950035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Habu N., Samejima M., Dean J. F., Eriksson K. E. Release of the FAD domain from cellobiose oxidase by proteases from cellulolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1993 Jul 26;327(2):161–164. doi: 10.1016/0014-5793(93)80162-n. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  14. Henriksson G., Johansson G., Pettersson G. Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta. 1993 Sep 13;1144(2):184–190. doi: 10.1016/0005-2728(93)90171-b. [DOI] [PubMed] [Google Scholar]
  15. Henriksson G., Pettersson G., Johansson G., Ruiz A., Uzcategui E. Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem. 1991 Feb 26;196(1):101–106. doi: 10.1111/j.1432-1033.1991.tb15791.x. [DOI] [PubMed] [Google Scholar]
  16. Kremer S. M., Wood P. M. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem. 1992 Apr 1;205(1):133–138. doi: 10.1111/j.1432-1033.1992.tb16760.x. [DOI] [PubMed] [Google Scholar]
  17. Kremer S. M., Wood P. M. Production of Fenton's reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem. 1992 Sep 15;208(3):807–814. doi: 10.1111/j.1432-1033.1992.tb17251.x. [DOI] [PubMed] [Google Scholar]
  18. Li B., Nagalla S. R., Renganathan V. Cloning of a cDNA encoding cellobiose dehydrogenase, a hemoflavoenzyme from Phanerochaete chrysosporium. Appl Environ Microbiol. 1996 Apr;62(4):1329–1335. doi: 10.1128/aem.62.4.1329-1335.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Massey V., Palmer G. On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry. 1966 Oct;5(10):3181–3189. doi: 10.1021/bi00874a016. [DOI] [PubMed] [Google Scholar]
  20. Morpeth F. F., Jones G. D. Resolution, purification and some properties of the multiple forms of cellobiose quinone dehydrogenase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1986 May 15;236(1):221–226. doi: 10.1042/bj2360221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morpeth F. F. Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J. 1985 Jun 15;228(3):557–564. doi: 10.1042/bj2280557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paice M. G., Reid I. D., Bourbonnais R., Archibald F. S., Jurasek L. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp. Appl Environ Microbiol. 1993 Jan;59(1):260–265. doi: 10.1128/aem.59.1.260-265.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reid I. D., Paice M. G. Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by Trametes versicolor. Appl Environ Microbiol. 1994 May;60(5):1395–1400. doi: 10.1128/aem.60.5.1395-1400.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roy B. P., Archibald F. An indirect free radical-based assay for the enzyme cellobiose:quinone oxidoreductase. Anal Biochem. 1994 Feb 1;216(2):291–298. doi: 10.1006/abio.1994.1044. [DOI] [PubMed] [Google Scholar]
  25. Roy B. P., Archibald F. Effects of Kraft Pulp and Lignin on Trametes versicolor Carbon Metabolism. Appl Environ Microbiol. 1993 Jun;59(6):1855–1863. doi: 10.1128/aem.59.6.1855-1863.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roy B. P., Paice M. G., Archibald F. S., Misra S. K., Misiak L. E. Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose:quinone oxidoreductase from Trametes versicolor. J Biol Chem. 1994 Aug 5;269(31):19745–19750. [PubMed] [Google Scholar]
  27. Samejima M., Eriksson K. E. A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium. Eur J Biochem. 1992 Jul 1;207(1):103–107. doi: 10.1111/j.1432-1033.1992.tb17026.x. [DOI] [PubMed] [Google Scholar]
  28. Schmidhalter D. R., Canevascini G. Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch Biochem Biophys. 1993 Feb 1;300(2):559–563. doi: 10.1006/abbi.1993.1077. [DOI] [PubMed] [Google Scholar]
  29. Wariishi H., Valli K., Gold M. H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992 Nov 25;267(33):23688–23695. [PubMed] [Google Scholar]
  30. Westermark U., Eriksson K. E. Purification and properties of cellobiose: quinone oxidoreductase from Sporotrichum pulverulentum. Acta Chem Scand B. 1975;29(4):419–424. [PubMed] [Google Scholar]
  31. Wood J. D., Wood P. M. Evidence that cellobiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim Biophys Acta. 1992 Feb 13;1119(1):90–96. doi: 10.1016/0167-4838(92)90239-a. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES