Abstract
We studied the effects of pH and ammonia concentration on the growth of three methanogens. These three halophilic, methylotrophic methanogens, Methanolobus bombayensis, Methanolobus taylorii, and Methanohalophilus zhilinaeae, grew at environmental pH ranges that overlapped with each other and spanned the pH range from 7.0 to 9.5. During growth they had reversed membrane pH gradients ((Delta)pH) at all pH values tested. The (Delta)pH was in the range of -0.4 to -0.9 pH units, with the cytosol being more acidic than the environmental pH. Methanohalophilus zhilinaeae had the most negative (Delta)pH (-0.9 pH units). These negative pH gradients resulted in the accumulation of ammonium (NH(inf4)(sup+)), and when grown at the highest external ammonia concentrations that allowed good growth, cells had cytosolic NH(inf4)(sup+) concentrations as high as 180 mM. The high concentrations of cytosolic NH(inf4)(sup+) were accompanied by greater (Delta)pH and lower concentrations of the major cytosolic cation K(sup+) (compared with cells grown in medium with only 5 mM ammonia). Methanolobus bombayensis and Methanolobus taylorii were more sensitive to total external ammonia at higher external pH values, but the inhibitory concentration of un-ionized ammonia that resulted in a 50% reduction of the growth rate was about 2 to 5 mM, regardless of the pH. This is consistent with growth inhibition by ammonia in other bacteria. However, Methanohalophilus zhilinaeae was more resistant to un-ionized ammonia than any other known organism. It had a 50% inhibitory concentration for un-ionized ammonia of 13 mM at pH 8.5 and 45 mM at pH 9.5. We examined the effects of pH on three ammonia-assimilating activities (glutamine synthetase, glutamate dehydrogenase, and alanine dehydrogenase) in cell lysates and found that the pH ranges were consistent with the observed ranges of intracellular pH.
Full Text
The Full Text of this article is available as a PDF (235.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeliovich A., Azov Y. Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol. 1976 Jun;31(6):801–806. doi: 10.1128/aem.31.6.801-806.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bao W., Usha S. N., Renganathan V. Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1993 Feb 1;300(2):705–713. doi: 10.1006/abbi.1993.1098. [DOI] [PubMed] [Google Scholar]
- Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 1985 Dec;49(4):359–378. doi: 10.1128/mr.49.4.359-378.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cirillo V. P., Gromet-Elhanan Z. Steady-state measurements of delta pH and delta psi in Rhodospirillum rubrum chromatophores by two different methods. Comparison with phosphorylation potential. Biochim Biophys Acta. 1981 Jul;636(2):244–253. doi: 10.1016/0005-2728(81)90098-0. [DOI] [PubMed] [Google Scholar]
- Jarrell K. F., Saulnier M., Ley A. Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge. Can J Microbiol. 1987 Jun;33(6):551–554. doi: 10.1139/m87-093. [DOI] [PubMed] [Google Scholar]
- Kenealy W. R., Thompson T. E., Schubert K. R., Zeikus J. G. Ammonia assimilation and synthesis of alanine, aspartate, and glutamate in Methanosarcina barkeri and Methanobacterium thermoautotrophicum. J Bacteriol. 1982 Jun;150(3):1357–1365. doi: 10.1128/jb.150.3.1357-1365.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lai M. C., Sowers K. R., Robertson D. E., Roberts M. F., Gunsalus R. P. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol. 1991 Sep;173(17):5352–5358. doi: 10.1128/jb.173.17.5352-5358.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol. 1988 Apr;38(2):139–142. doi: 10.1099/00207713-38-2-139. [DOI] [PubMed] [Google Scholar]
- Miller T. L., Wolin M. J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol. 1974 May;27(5):985–987. doi: 10.1128/am.27.5.985-987.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura T., Tokuda H., Unemoto T. K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, Vibrio alginolyticus. Biochim Biophys Acta. 1984 Oct 3;776(2):330–336. doi: 10.1016/0005-2736(84)90222-0. [DOI] [PubMed] [Google Scholar]
- Ni S. S., Boone D. R. Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol. 1991 Jul;41(3):410–416. doi: 10.1099/00207713-41-3-410. [DOI] [PubMed] [Google Scholar]
- Ni S., Boone J. E., Boone D. R. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH. J Bacteriol. 1994 Dec;176(23):7274–7279. doi: 10.1128/jb.176.23.7274-7279.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oremland R. S., Kiene R. P., Mathrani I., Whiticar M. J., Boone D. R. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl Environ Microbiol. 1989 Apr;55(4):994–1002. doi: 10.1128/aem.55.4.994-1002.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raemakers-Franken P. C., Brand R. J., Kortstee A. J., Van der Drift C., Vogels G. D. Ammonia assimilation and glutamate incorporation in coenzyme F420 derivatives of Methanosarcina barkeri. Antonie Van Leeuwenhoek. 1991 May;59(4):243–248. doi: 10.1007/BF00583677. [DOI] [PubMed] [Google Scholar]
- Robertson D. E., Lesage S., Roberts M. F. Beta-aminoglutaric acid is a major soluble component of Methanococcus thermolithotrophicus. Biochim Biophys Acta. 1989 Sep 15;992(3):320–326. doi: 10.1016/0304-4165(89)90091-3. [DOI] [PubMed] [Google Scholar]
- Robertson D. E., Noll D., Roberts M. F., Menaia J. A., Boone D. R. Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol. 1990 Feb;56(2):563–565. doi: 10.1128/aem.56.2.563-565.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
- Russell J. B. Intracellular pH of acid-tolerant ruminal bacteria. Appl Environ Microbiol. 1991 Nov;57(11):3383–3384. doi: 10.1128/aem.57.11.3383-3384.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. L., Tao T., Maguire M. E. Membrane topology of a P-type ATPase. The MgtB magnesium transport protein of Salmonella typhimurium. J Biol Chem. 1993 Oct 25;268(30):22469–22479. [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Sowers K. R., Gunsalus R. P. Halotolerance in Methanosarcina spp.: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation. Appl Environ Microbiol. 1995 Dec;61(12):4382–4388. doi: 10.1128/aem.61.12.4382-4388.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprott G. D., Shaw K. M., Jarrell K. F. Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem. 1984 Oct 25;259(20):12602–12608. [PubMed] [Google Scholar]
- Zwietering M. H., Jongenburger I., Rombouts F. M., van 't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990 Jun;56(6):1875–1881. doi: 10.1128/aem.56.6.1875-1881.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]