Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Dec;62(12):4598–4607. doi: 10.1128/aem.62.12.4598-4607.1996

Photosynthate Partitioning and Fermentation in Hot Spring Microbial Mat Communities

S C Nold, D M Ward
PMCID: PMC1389010  PMID: 16535472

Abstract

Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from various hot springs predominantly accumulated polyglucose during periods of illumination (between 77 and 85% of total incorporated (sup14)CO(inf2)). Although photosynthetically active, mat photoautotrophs do not appear to be rapidly growing, since we also detected only limited synthesis of macromolecules associated with growth (i.e., protein and rRNA). To test the hypothesis that polysaccharide reserves are fermented in situ under the dark anaerobic conditions cyanobacterial mats experience at night, mat cores were prelabeled with (sup14)CO(inf2) under illuminated conditions and then transferred to dark anaerobic conditions. Radiolabel in the polysaccharide fraction decreased by 74.7% after 12 h, of which 58.5% was recovered as radiolabeled acetate, CO(inf2), and propionate. These results indicate tightly coupled carbon fixation and fermentative processes and the potential for significant transfer of carbon from primary producers to heterotrophic members of these cyanobacterial mat communities.

Full Text

The Full Text of this article is available as a PDF (343.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. M., Smith A. J. Nitrogen chlorosis in blue-green algae. Arch Mikrobiol. 1969;69(2):114–120. doi: 10.1007/BF00409755. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. L., Tayne T. A., Ward D. M. Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl Environ Microbiol. 1987 Oct;53(10):2343–2352. doi: 10.1128/aem.53.10.2343-2352.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bateson M. M., Ward D. M. Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol. 1988 Jul;54(7):1738–1743. doi: 10.1128/aem.54.7.1738-1743.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doemel W. N., Brock T. D. Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol. 1977 Oct;34(4):433–452. doi: 10.1128/aem.34.4.433-452.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferris M. J., Muyzer G., Ward D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol. 1996 Feb;62(2):340–346. doi: 10.1128/aem.62.2.340-346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferris M. J., Ruff-Roberts A. L., Kopczynski E. D., Bateson M. M., Ward D. M. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol. 1996 Mar;62(3):1045–1050. doi: 10.1128/aem.62.3.1045-1050.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gausing K. Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J Mol Biol. 1977 Sep 25;115(3):335–354. doi: 10.1016/0022-2836(77)90158-9. [DOI] [PubMed] [Google Scholar]
  8. Kramer J. G., Singleton F. L. Measurement of rRNA Variations in Natural Communities of Microorganisms on the Southeastern U.S. Continental Shelf. Appl Environ Microbiol. 1993 Aug;59(8):2430–2436. doi: 10.1128/aem.59.8.2430-2436.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  10. Lehmann M., Wöber G. Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch Microbiol. 1976 Dec 1;111(1-2):93–97. doi: 10.1007/BF00446554. [DOI] [PubMed] [Google Scholar]
  11. Mann N., Carr N. G. Control of macromolecular composition and cell division in the blue-green algae Anacystis nidulans. J Gen Microbiol. 1974 Aug;83(2):399–405. doi: 10.1099/00221287-83-2-399. [DOI] [PubMed] [Google Scholar]
  12. Nold S. C., Kopczynski E. D., Ward D. M. Cultivation of aerobic chemoorganotrophic proteobacteria and gram-positive bacteria from a hot spring microbial mat. Appl Environ Microbiol. 1996 Nov;62(11):3917–3921. doi: 10.1128/aem.62.11.3917-3921.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nold S. C., Ward D. M. Diverse Thermus species inhabit a single hot spring microbial mat. Syst Appl Microbiol. 1995;18:274–278. doi: 10.1016/s0723-2020(11)80398-x. [DOI] [PubMed] [Google Scholar]
  14. Revsbech N. P., Ward D. M. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol. 1984 Aug;48(2):270–275. doi: 10.1128/aem.48.2.270-275.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson L. L., Castenholz R. W. Enhanced Survival of the Cyanobacterium Oscillatoria terebriformis in Darkness under Anaerobic Conditions. Appl Environ Microbiol. 1987 Sep;53(9):2151–2158. doi: 10.1128/aem.53.9.2151-2158.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ruby E. G., Asato L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol. 1993;159(2):160–167. doi: 10.1007/BF00250277. [DOI] [PubMed] [Google Scholar]
  17. Ruff-Roberts A. L., Kuenen J. G., Ward D. M. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol. 1994 Feb;60(2):697–704. doi: 10.1128/aem.60.2.697-704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sandbeck K. A., Ward D. M. Fate of immediate methane precursors in low-sulfate, hot-spring algal-bacterial mats. Appl Environ Microbiol. 1981 Mar;41(3):775–782. doi: 10.1128/aem.41.3.775-782.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Santegoeds C. M., Nold S. C., Ward D. M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl Environ Microbiol. 1996 Nov;62(11):3922–3928. doi: 10.1128/aem.62.11.3922-3928.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vestal J. R., White D. C. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience. 1989 Sep;39(8):535–541. [PubMed] [Google Scholar]
  21. Ward D. M., Olson G. J. Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring. Appl Environ Microbiol. 1980 Jul;40(1):67–74. doi: 10.1128/aem.40.1.67-74.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weimer P. J., Wagner L. W., Knowlton S., Ng T. K. Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids. Arch Microbiol. 1984 May;138(1):31–36. doi: 10.1007/BF00425403. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES