Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):151–155. doi: 10.1128/aem.63.1.151-155.1997

Metabolism of Naphthalene, 1-Naphthol, Indene, and Indole by Rhodococcus sp. Strain NCIMB 12038

C Boyd, M J Larkin, K A Reid, N D Sharma, K Wilson
PMCID: PMC1389094  PMID: 16535479

Abstract

The regulation of naphthalene and 1-naphthol metabolism in a Rhodococcus sp. (NCIMB 12038) has been investigated. The microorganism utilizes separate pathways for the degradation of these compounds, and they are regulated independently. Naphthalene metabolism was inducible, but not by salicylate, and 1-naphthol metabolism, although constitutive, was also repressed during growth on salicylate. The biochemistry of naphthalene degradation in this strain was otherwise identical to that found in Pseudomonas putida, with salicylate as a central metabolite and naphthalene initially being oxidized via a naphthalene dioxygenase enzyme to cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene (naphthalene cis-diol). A dioxygenase enzyme was not expressed under growth conditions which facilitate 1-naphthol degradation. However, biotransformations with indene as a substrate suggested that a monooxygenase enzyme may be involved in the degradation of this compound. Indole was transformed to indigo by both naphthalene-grown NCIMB 12038 and by cells grown in the absence of an inducer. Therefore, the presence of a naphthalene dioxygenase enzyme activity was not necessary for this reaction. Thus, the biotransformation of indole to indigo may be facilitated by another type of enzyme (possibly a monooxygenase) in this organism.

Full Text

The Full Text of this article is available as a PDF (201.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnsley E. A. The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. J Gen Microbiol. 1975 May;88(1):193–196. doi: 10.1099/00221287-88-1-193. [DOI] [PubMed] [Google Scholar]
  2. Bollag J. M., Czaplicki E. J., Minard R. D. Bacterial metabolism of 1-naphthol. J Agric Food Chem. 1975 Jan-Feb;23(1):85–90. doi: 10.1021/jf60197a020. [DOI] [PubMed] [Google Scholar]
  3. Cerniglia C. E., Althaus J. R., Evans F. E., Freeman J. P., Mitchum R. K., Yang S. K. Stereochemistry and evidence for an arene oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem Biol Interact. 1983 Apr-May;44(1-2):119–132. doi: 10.1016/0009-2797(83)90134-5. [DOI] [PubMed] [Google Scholar]
  4. Cerniglia C. E., Freeman J. P., Evans F. E. Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus. Arch Microbiol. 1984 Aug;138(4):283–286. doi: 10.1007/BF00410891. [DOI] [PubMed] [Google Scholar]
  5. Connors M. A., Barnsley E. A. Metabolism of naphthalene by pseudomonads: salicylaldehyde as the first possible inducer in the metabolic pathway. J Bacteriol. 1980 Mar;141(3):1052–1054. doi: 10.1128/jb.141.3.1052-1054.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies J. I., Evans W. C. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J. 1964 May;91(2):251–261. doi: 10.1042/bj0910251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ensley B. D., Gibson D. T., Laborde A. L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol. 1982 Mar;149(3):948–954. doi: 10.1128/jb.149.3.948-954.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ensley B. D., Haigler B. E. Naphthalene dioxygenase from Pseudomonas NCIB 9816. Methods Enzymol. 1990;188:46–52. doi: 10.1016/0076-6879(90)88011-x. [DOI] [PubMed] [Google Scholar]
  9. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. doi: 10.1126/science.6353574. [DOI] [PubMed] [Google Scholar]
  10. FERNLEY H. N., EVANS W. C. Oxidative metabolism of polycyclic hydrocarbons by soil Pseudomonads. Nature. 1958 Aug 9;182(4632):373–375. doi: 10.1038/182373a0. [DOI] [PubMed] [Google Scholar]
  11. Ferris J. P., Fasco M. J., Stylianopoulou F. L., Jerina D. M., Daly J. W., Jeffrey A. M. Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys. 1973 May;156(1):97–103. doi: 10.1016/0003-9861(73)90345-7. [DOI] [PubMed] [Google Scholar]
  12. Gibson D. T., Resnick S. M., Lee K., Brand J. M., Torok D. S., Wackett L. P., Schocken M. J., Haigler B. E. Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4. J Bacteriol. 1995 May;177(10):2615–2621. doi: 10.1128/jb.177.10.2615-2621.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grund E., Denecke B., Eichenlaub R. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol. 1992 Jun;58(6):1874–1877. doi: 10.1128/aem.58.6.1874-1877.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hart S., Koch K. R., Woods D. R. Identification of indigo-related pigments produced by Escherichia coli containing a cloned Rhodococcus gene. J Gen Microbiol. 1992 Jan;138(1):211–216. doi: 10.1099/00221287-138-1-211. [DOI] [PubMed] [Google Scholar]
  15. Hill R., Hart S., Illing N., Kirby R., Woods D. R. Cloning and expression of Rhodococcus genes encoding pigment production in Escherichia coli. J Gen Microbiol. 1989 Jun;135(6):1507–1513. doi: 10.1099/00221287-135-6-1507. [DOI] [PubMed] [Google Scholar]
  16. Jeffrey A. M., Yeh H. J., Jerina D. M., Patel T. R., Davey J. F., Gibson D. T. Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry. 1975 Feb 11;14(3):575–584. doi: 10.1021/bi00674a018. [DOI] [PubMed] [Google Scholar]
  17. Keil H., Saint C. M., Williams P. A. Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product. J Bacteriol. 1987 Feb;169(2):764–770. doi: 10.1128/jb.169.2.764-770.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Larkin M. J., Day M. J. The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. J Appl Bacteriol. 1986 Mar;60(3):233–242. doi: 10.1111/j.1365-2672.1986.tb01078.x. [DOI] [PubMed] [Google Scholar]
  19. Mueller J. G., Chapman P. J., Pritchard P. H. Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl Environ Microbiol. 1989 Dec;55(12):3085–3090. doi: 10.1128/aem.55.12.3085-3090.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patel T. R., Barnsley E. A. Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacteriol. 1980 Aug;143(2):668–673. doi: 10.1128/jb.143.2.668-673.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patel T. R., Gibson D. T. Purification and propeties of (plus)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol. 1974 Sep;119(3):879–888. doi: 10.1128/jb.119.3.879-888.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Powlowski J., Shingler V. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation. 1994 Dec;5(3-4):219–236. doi: 10.1007/BF00696461. [DOI] [PubMed] [Google Scholar]
  23. Stephens G. M., Sidebotham J. M., Mann N. H., Dalton H. Cloning and expression in Escherichia coli of the toluene dioxygenase gene from Pseudomonas putida NCIB11767. FEMS Microbiol Lett. 1989 Feb;57(3):295–300. doi: 10.1016/0378-1097(89)90317-0. [DOI] [PubMed] [Google Scholar]
  24. Sutherland J. B., Freeman J. P., Selby A. L., Fu P. P., Miller D. W., Cerniglia C. E. Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol. 1990;154(3):260–266. doi: 10.1007/BF00248965. [DOI] [PubMed] [Google Scholar]
  25. Wackett L. P., Kwart L. D., Gibson D. T. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry. 1988 Feb 23;27(4):1360–1367. doi: 10.1021/bi00404a041. [DOI] [PubMed] [Google Scholar]
  26. Yen K. M., Karl M. R., Blatt L. M., Simon M. J., Winter R. B., Fausset P. R., Lu H. S., Harcourt A. A., Chen K. K. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol. 1991 Sep;173(17):5315–5327. doi: 10.1128/jb.173.17.5315-5327.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES