Abstract
Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated.
Full Text
The Full Text of this article is available as a PDF (222.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bent A. F., Innes R. W., Ecker J. R., Staskawicz B. J. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):372–378. doi: 10.1094/mpmi-5-372. [DOI] [PubMed] [Google Scholar]
- Bereswill S., Pahl A., Bellemann P., Zeller W., Geider K. Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl Environ Microbiol. 1992 Nov;58(11):3522–3526. doi: 10.1128/aem.58.11.3522-3526.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billington D. C., Golding B. T., Primrose S. B. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi. Biochem J. 1979 Sep 15;182(3):827–836. doi: 10.1042/bj1820827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou T. W., Yang S. F. The biogenesis of ethylene in Penicillium digitatum. Arch Biochem Biophys. 1973 Jul;157(1):73–82. doi: 10.1016/0003-9861(73)90391-3. [DOI] [PubMed] [Google Scholar]
- Ecker J. R. The ethylene signal transduction pathway in plants. Science. 1995 May 5;268(5211):667–675. doi: 10.1126/science.7732375. [DOI] [PubMed] [Google Scholar]
- Ferguson I. B., Mitchell R. E. Stimulation of ethylene production in bean leaf discs by the pseudomonad phytotoxin coronatine. Plant Physiol. 1985 Apr;77(4):969–973. doi: 10.1104/pp.77.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda H., Ogawa T., Ishihara K., Fujii T., Nagahama K., Omata T., Inoue Y., Tanase S., Morino Y. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem Biophys Res Commun. 1992 Oct 30;188(2):826–832. doi: 10.1016/0006-291x(92)91131-9. [DOI] [PubMed] [Google Scholar]
- Fukuda H., Ogawa T., Tanase S. Ethylene production by micro-organisms. Adv Microb Physiol. 1993;35:275–306. doi: 10.1016/s0065-2911(08)60101-0. [DOI] [PubMed] [Google Scholar]
- Fukuda H., Ogawa T., Tazaki M., Nagahama K., Fujii T., Tanase S., Morino Y. Two reactions are simultaneously catalyzed by a single enzyme: the arginine-dependent simultaneous formation of two products, ethylene and succinate, from 2-oxoglutarate by an enzyme from Pseudomonas syringae. Biochem Biophys Res Commun. 1992 Oct 30;188(2):483–489. doi: 10.1016/0006-291x(92)91081-z. [DOI] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- Kenyon J. S., Turner J. G. The Stimulation of Ethylene Synthesis in Nicotiana tabacum Leaves by the Phytotoxin Coronatine. Plant Physiol. 1992 Sep;100(1):219–224. doi: 10.1104/pp.100.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawton K. A., Potter S. L., Uknes S., Ryals J. Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent. Plant Cell. 1994 May;6(5):581–588. doi: 10.1105/tpc.6.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mansouri S., Bunch A. W. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine. J Gen Microbiol. 1989 Nov;135(11):2819–2827. doi: 10.1099/00221287-135-11-2819. [DOI] [PubMed] [Google Scholar]
- Nagahama K., Yoshino K., Matsuoka M., Sato M., Tanase S., Ogawa T., Fukuda H. Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme. Microbiology. 1994 Sep;140(Pt 9):2309–2313. doi: 10.1099/13500872-140-9-2309. [DOI] [PubMed] [Google Scholar]
- Nüske J., Fritsche W. Phaseolotoxin production by Pseudomonas syringae pv. phaseolicola: the influence of temperature. J Basic Microbiol. 1989;29(7):441–447. doi: 10.1002/jobm.3620290713. [DOI] [PubMed] [Google Scholar]
- Primrose S. B. Formation of ethylene by Escherichia coli. J Gen Microbiol. 1976 Jul;95(1):159–165. doi: 10.1099/00221287-95-1-159. [DOI] [PubMed] [Google Scholar]
- Völksch B., Laplace F., Fritsche W. Untersuchungen zur Variabilität der Phaseolotoxinbildung bei Pseudomonas syringae pv. phaseolicola. Zentralbl Mikrobiol. 1984;139(2):109–118. [PubMed] [Google Scholar]