Abstract
Germination of Rhizopus oligosporus sporangiospores is characterized by swelling of the spores and subsequent emergence of germ tubes. Changes in spore morphology and alterations in intracellular pH (pH(infin)) of the sporangiospores were assessed during the germination process by flow cytometry. Sporangiospores were stained with carboxyfluorescein by incubation with carboxyfluorescein diacetate. The nonfluorescent carboxyfluorescein diacetate is passively transported into intact cells and subsequently cleaved by esterases, which results in intracellular accumulation of the fluorescent carboxyfluorescein. Given that the fluorescence of carboxyfluorescein is pH dependent, the pH(infin) of the individual spores could be assessed simultaneously with spore size. For R. oligosporus, swelling of the sporangiospores was accompanied by an increase of pH(infin). In the presence of nonanoic acid, a self-inhibitor produced by various fungi, increase of the pH(infin) was prevented and swelling was inhibited at concentrations of less than 1 mM. Octanoic acid and decanoic acid were equally effective. Acetic acid also inhibited germination but at much higher concentrations (>8 mM). The mechanism of action of these fatty acids is most likely dissipation of the pH gradient. A model is proposed in which the pH(infin) plays a crucial role in the germination of R. oligosporus sporangiospores.
Full Text
The Full Text of this article is available as a PDF (265.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brandão R. L., Castro I. M., Passos J. B., Nicoli J. R., Thevelein J. M. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum. J Gen Microbiol. 1992 Aug;138(Pt 8):1579–1586. doi: 10.1099/00221287-138-8-1579. [DOI] [PubMed] [Google Scholar]
- Breeuwer P., Drocourt J. L., Bunschoten N., Zwietering M. H., Rombouts F. M., Abee T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl Environ Microbiol. 1995 Apr;61(4):1614–1619. doi: 10.1128/aem.61.4.1614-1619.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eraso P., Portillo F. Molecular mechanism of regulation of yeast plasma membrane H(+)-ATPase by glucose. Interaction between domains and identification of new regulatory sites. J Biol Chem. 1994 Apr 8;269(14):10393–10399. [PubMed] [Google Scholar]
- Garrett M. K., Robinson P. M. A stable inhibitor of spore germination produced by fungi. Arch Mikrobiol. 1969;67(4):370–377. doi: 10.1007/BF00412583. [DOI] [PubMed] [Google Scholar]
- Graber M. L., DiLillo D. C., Friedman B. L., Pastoriza-Munoz E. Characteristics of fluoroprobes for measuring intracellular pH. Anal Biochem. 1986 Jul;156(1):202–212. doi: 10.1016/0003-2697(86)90174-0. [DOI] [PubMed] [Google Scholar]
- Hobot J. A., Gull K. The identification of a self-inhibitor from Syncephalastrum racemosum and its effect upon sporangiospore germination. Antonie Van Leeuwenhoek. 1980;46(5):435–441. doi: 10.1007/BF00395824. [DOI] [PubMed] [Google Scholar]
- Kovác L., Böhmerová E., Butko P. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Dec 30;721(4):341–348. doi: 10.1016/0167-4889(82)90088-x. [DOI] [PubMed] [Google Scholar]
- Medwid R. D., Grant D. W. Germination of Rhizopus oligosporus Sporangiospores. Appl Environ Microbiol. 1984 Dec;48(6):1067–1071. doi: 10.1128/aem.48.6.1067-1071.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palacios J., Serrano R. Proton permeability induced by polyene antibiotics. A plausible mechanism for their inhibition of maltose fermentation in yeast. FEBS Lett. 1978 Jul 15;91(2):198–201. doi: 10.1016/0014-5793(78)81171-5. [DOI] [PubMed] [Google Scholar]
- Thevelein J. M. Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch Microbiol. 1984 May;138(1):64–67. doi: 10.1007/BF00425409. [DOI] [PubMed] [Google Scholar]
- Thevelein J. M. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. doi: 10.1002/yea.320101308. [DOI] [PubMed] [Google Scholar]
- Tripp M. L., Paznokas J. L. Glucose-initiated germination of mucor racemosus sporangiospores. J Gen Microbiol. 1982 Mar;128(3):477–483. doi: 10.1099/00221287-128-3-477. [DOI] [PubMed] [Google Scholar]
- VAN SUMERE C. F., VAN SUMERE-DE PRETER C., VINING L. C., LEDINGHAM G. A. Coumarins and phenolic acids in the uredospores of wheat stem rust. Can J Microbiol. 1957 Oct;3(6):847–862. doi: 10.1139/m57-094. [DOI] [PubMed] [Google Scholar]
- Viegas C. A., Rosa M. F., Sá-Correia I., Novais J. M. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation. Appl Environ Microbiol. 1989 Jan;55(1):21–28. doi: 10.1128/aem.55.1.21-28.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- dos Passos J. B., Vanhalewyn M., Brandão R. L., Castro I. M., Nicoli J. R., Thevelein J. M. Glucose-induced activation of plasma membrane H(+)-ATPase in mutants of the yeast Saccharomyces cerevisiae affected in cAMP metabolism, cAMP-dependent protein phosphorylation and the initiation of glycolysis. Biochim Biophys Acta. 1992 Jul 22;1136(1):57–67. doi: 10.1016/0167-4889(92)90085-p. [DOI] [PubMed] [Google Scholar]
