Abstract
The novel dye SYBR Green I binds specifically to nucleic acids and can be excited by blue light (488-nm wavelength). Cell concentrations of prokaryotes measured in marine samples with this dye on a low-cost compact flow cytometer are comparable to those obtained with the UV-excited stain Hoechst 33342 (bis-benzimide) on an expensive flow cytometer with a water-cooled laser. In contrast to TOTO-1 and TO-PRO-1, SYBR Green I has the advantage of clearly discriminating both heterotrophic bacteria and autotrophic Prochlorococcus cells, even in oligotrophic waters. As with TOTO-1 and TO-PRO-1, two groups of heterotrophic bacteria (B-I and B-II-like types) can be distinguished. Moreover, the resolution of DNA distribution obtained with SYBR Green I is similar to that obtained with Hoechst 33342 and permits the analysis of the cell cycle of photosynthetic prokaryotes over the whole water column.
Full Text
The Full Text of this article is available as a PDF (239.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GUILLARD R. R., RYTHER J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962 Apr;8:229–239. doi: 10.1139/m62-029. [DOI] [PubMed] [Google Scholar]
- Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
- Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marie D., Vaulot D., Partensky F. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl Environ Microbiol. 1996 May;62(5):1649–1655. doi: 10.1128/aem.62.5.1649-1655.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monger B. C., Landry M. R. Flow cytometric analysis of marine bacteria with hoechst 33342. Appl Environ Microbiol. 1993 Mar;59(3):905–911. doi: 10.1128/aem.59.3.905-911.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson B. R., Button D. K. Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry. 1989 Jan;10(1):70–76. doi: 10.1002/cyto.990100112. [DOI] [PubMed] [Google Scholar]
- Vaulot D., Courties C., Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytometry. 1989 Sep;10(5):629–635. doi: 10.1002/cyto.990100519. [DOI] [PubMed] [Google Scholar]
- Vaulot D., Lebot N., Marie D., Fukai E. Effect of Phosphorus on the Synechococcus Cell Cycle in Surface Mediterranean Waters during Summer. Appl Environ Microbiol. 1996 Jul;62(7):2527–2533. doi: 10.1128/aem.62.7.2527-2533.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaulot D., Marie D., Olson R. J., Chisholm S. W. Growth of prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science. 1995 Jun 9;268(5216):1480–1482. doi: 10.1126/science.268.5216.1480. [DOI] [PubMed] [Google Scholar]