Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):213–219. doi: 10.1128/aem.63.1.213-219.1997

Conjugative Transfer of Chromosomal Genes between Fluorescent Pseudomonads in the Rhizosphere of Wheat

J Troxler, P Azelvandre, M Zala, G Defago, D Haas
PMCID: PMC1389100  PMID: 16535486

Abstract

Bacteria released in large numbers for biocontrol or bioremediation purposes might exchange genes with other microorganisms. Two model systems were designed to investigate the likelihood of such an exchange and some factors which govern the conjugative exchange of chromosomal genes between root-colonizing pseudomonads in the rhizosphere of wheat. The first model consisted of the biocontrol strain CHA0 of Pseudomonas fluorescens and transposon-facilitated recombination (Tfr). A conjugative IncP plasmid loaded with transposon Tn5, in a CHA0 derivative carrying a chromosomal Tn5 insertion, promoted chromosome transfer to auxotrophic CHA0 recipients in vitro. A chromosomal marker (pro) was transferred at a frequency of about 10(sup-6) per donor on wheat roots under gnotobiotic conditions, provided that the Tfr donor and recipient populations each contained 10(sup6) to 10(sup7) CFU per g of root. In contrast, no conjugative gene transfer was detected in soil, illustrating that the root surface stimulates conjugation. The second model system was based on the genetically well-characterized strain PAO of Pseudomonas aeruginosa and the chromosome mobilizing IncP plasmid R68.45. Although originally isolated from a human wound, strain PAO1 was found to be an excellent root colonizer, even under natural, nonsterile conditions. Matings between an auxotrophic R68.45 donor and auxotrophic recipients produced prototrophic chromosomal recombinants at 10(sup-4) to 10(sup-5) per donor on wheat roots in artificial soil under gnotobiotic conditions and at about 10(sup-6) per donor on wheat roots in natural, nonsterile soil microcosms after 2 weeks of incubation. The frequencies of chromosomal recombinants were as high as or higher than the frequencies of R68.45 transconjugants, reflecting mainly the selective growth advantage of the prototrophic recombinants over the auxotrophic parental strains in the rhizosphere. Although under field conditions the formation of chromosomal recombinants is expected to be reduced by several factors, we conclude that chromosomal genes, whether present naturally or introduced by genetic modification, may be transmissible between rhizosphere bacteria.

Full Text

The Full Text of this article is available as a PDF (230.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey M. J., Lilley A. K., Thompson I. P., Rainey P. B., Ellis R. J. Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol Ecol. 1995 Dec;4(6):755–763. doi: 10.1111/j.1365-294x.1995.tb00276.x. [DOI] [PubMed] [Google Scholar]
  2. Boronin A. M. Diversity of Pseudomonas plasmids: to what extent? FEMS Microbiol Lett. 1992 Dec 15;100(1-3):461–467. doi: 10.1111/j.1574-6968.1992.tb14077.x. [DOI] [PubMed] [Google Scholar]
  3. Boulnois G. J., Varley J. M., Sharpe G. S., Franklin F. C. Transposon donor plasmids, based on ColIb-P9, for use in Pseudomonas putida and a variety of other gram negative bacteria. Mol Gen Genet. 1985;200(1):65–67. doi: 10.1007/BF00383313. [DOI] [PubMed] [Google Scholar]
  4. Buysens S., Heungens K., Poppe J., Hofte M. Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of Tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol. 1996 Mar;62(3):865–871. doi: 10.1128/aem.62.3.865-871.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll H., Moenne-Loccoz Y., Dowling D. N., O'gara F. Mutational Disruption of the Biosynthesis Genes Coding for the Antifungal Metabolite 2,4-Diacetylphloroglucinol Does Not Influence the Ecological Fitness of Pseudomonas fluorescens F113 in the Rhizosphere of Sugarbeets. Appl Environ Microbiol. 1995 Aug;61(8):3002–3007. doi: 10.1128/aem.61.8.3002-3007.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook R. J., Thomashow L. S., Weller D. M., Fujimoto D., Mazzola M., Bangera G., Kim D. S. Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4197–4201. doi: 10.1073/pnas.92.10.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daane L. L., Molina J. A., Berry E. C., Sadowsky M. J. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl Environ Microbiol. 1996 Feb;62(2):515–521. doi: 10.1128/aem.62.2.515-521.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiGiovanni G. D., Neilson J. W., Pepper I. L., Sinclair N. A. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol. 1996 Jul;62(7):2521–2526. doi: 10.1128/aem.62.7.2521-2526.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dodson K. W., Berg D. E. Saturation mutagenesis of the inside end of insertion sequence IS50. Gene. 1989 Dec 21;85(1):75–81. doi: 10.1016/0378-1119(89)90466-6. [DOI] [PubMed] [Google Scholar]
  10. Glew J. G., Angle J. S., Sadowsky M. J. In vivo transfer of pR68.45 from Pseudomonas aeruginosa into indigenous soil bacteria. Microb Releases. 1993 Mar;1(4):237–241. [PubMed] [Google Scholar]
  11. Götz A., Pukall R., Smit E., Tietze E., Prager R., Tschäpe H., van Elsas J. D., Smalla K. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol. 1996 Jul;62(7):2621–2628. doi: 10.1128/aem.62.7.2621-2628.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOLLOWAY B. W. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955 Dec;13(3):572–581. doi: 10.1099/00221287-13-3-572. [DOI] [PubMed] [Google Scholar]
  13. Haas D., Holloway B. W. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Mar 30;144(3):243–251. doi: 10.1007/BF00341722. [DOI] [PubMed] [Google Scholar]
  14. Haas D., Holloway B. W., Schamböck A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. doi: 10.1007/BF00265571. [DOI] [PubMed] [Google Scholar]
  15. Holloway B. W., Römling U., Tümmler B. Genomic mapping of Pseudomonas aeruginosa PAO. Microbiology. 1994 Nov;140(Pt 11):2907–2929. doi: 10.1099/13500872-140-11-2907. [DOI] [PubMed] [Google Scholar]
  16. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  17. Kinkle B. K., Sadowsky M. J., Schmidt E. L., Koskinen W. C. Plasmids pJP4 and r68.45 Can Be Transferred between Populations of Bradyrhizobia in Nonsterile Soil. Appl Environ Microbiol. 1993 Jun;59(6):1762–1766. doi: 10.1128/aem.59.6.1762-1766.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mazodier P., Davies J. Gene transfer between distantly related bacteria. Annu Rev Genet. 1991;25:147–171. doi: 10.1146/annurev.ge.25.120191.001051. [DOI] [PubMed] [Google Scholar]
  19. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S., 3rd Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol. 1992 Aug;58(8):2616–2624. doi: 10.1128/aem.58.8.2616-2624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morales A., Garland J. L., Lim D. V. Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat. FEMS Microbiol Ecol. 1996 Jul;20(3):155–162. doi: 10.1016/0168-6496(96)00020-7. [DOI] [PubMed] [Google Scholar]
  21. Natsch A., Keel C., Pfirter H. A., Haas D., Défago G. Contribution of the Global Regulator Gene gacA to Persistence and Dissemination of Pseudomonas fluorescens Biocontrol Strain CHA0 Introduced into Soil Microcosms. Appl Environ Microbiol. 1994 Jul;60(7):2553–2560. doi: 10.1128/aem.60.7.2553-2560.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neilson J. W., Josephson K. L., Pepper I. L., Arnold R. B., Di Giovanni G. D., Sinclair N. A. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl Environ Microbiol. 1994 Nov;60(11):4053–4058. doi: 10.1128/aem.60.11.4053-4058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Morchoe S. B., Ogunseitan O., Sayler G. S., Miller R. V. Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment. Appl Environ Microbiol. 1988 Aug;54(8):1923–1929. doi: 10.1128/aem.54.8.1923-1929.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oberhänsli T., Dfago G., Haas D. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol. 1991 Oct;137(10):2273–2279. doi: 10.1099/00221287-137-10-2273. [DOI] [PubMed] [Google Scholar]
  25. Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol. 1994 Jun 24;239(5):623–663. doi: 10.1006/jmbi.1994.1404. [DOI] [PubMed] [Google Scholar]
  26. Ramos-González M. I., Ramos-Díaz M. A., Ramos J. L. Chromosomal gene capture mediated by the Pseudomonas putida TOL catabolic plasmid. J Bacteriol. 1994 Aug;176(15):4635–4641. doi: 10.1128/jb.176.15.4635-4641.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reimmann C., Haas D. IS21 insertion in the trfA replication control gene of chromosomally integrated plasmid RP1: a property of stable Pseudomonas aeruginosa Hfr strains. Mol Gen Genet. 1986 Jun;203(3):511–519. doi: 10.1007/BF00422078. [DOI] [PubMed] [Google Scholar]
  28. Rella M., Mercenier A., Haas D. Transposon insertion mutagenesis of Pseudomonas aeruginosa with a Tn5 derivative: application to physical mapping of the arc gene cluster. Gene. 1985;33(3):293–303. doi: 10.1016/0378-1119(85)90237-9. [DOI] [PubMed] [Google Scholar]
  29. Rella M., Watson J. M., Thomas C. M., Haas D. Deletions in the tetracycline resistance determinant reduce the thermosensitivity of a trfA(Ts) derivative of plasmid RP1 in Pseudomonas aeruginosa. Ann Inst Pasteur Microbiol. 1987 Mar-Apr;138(2):151–164. doi: 10.1016/0769-2609(87)90192-x. [DOI] [PubMed] [Google Scholar]
  30. Riess G., Holloway B. W., Pühler A. R68.45, a plasmid with chromosome mobilizing ability (Cma) carries a tandem duplication. Genet Res. 1980 Aug;36(1):99–109. doi: 10.1017/s0016672300019704. [DOI] [PubMed] [Google Scholar]
  31. Sarniguet A., Kraus J., Henkels M. D., Muehlchen A. M., Loper J. E. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12255–12259. doi: 10.1073/pnas.92.26.12255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol. 1995 Sep;177(18):5387–5392. doi: 10.1128/jb.177.18.5387-5392.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smit E., Venne D., van Elsas J. D. Mobilization of a Recombinant IncQ Plasmid between Bacteria on Agar and in Soil via Cotransfer or Retrotransfer. Appl Environ Microbiol. 1993 Jul;59(7):2257–2263. doi: 10.1128/aem.59.7.2257-2263.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sullivan J. T., Patrick H. N., Lowther W. L., Scott D. B., Ronson C. W. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8985–8989. doi: 10.1073/pnas.92.19.8985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Top E., De Smet I., Verstraete W., Dijkmans R., Mergeay M. Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol. 1994 Mar;60(3):831–839. doi: 10.1128/aem.60.3.831-839.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Voisard C., Keel C., Haas D., Dèfago G. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 1989 Feb;8(2):351–358. doi: 10.1002/j.1460-2075.1989.tb03384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watson J. M., Holloway B. W. Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol. 1976 Mar;125(3):780–786. doi: 10.1128/jb.125.3.780-786.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van der Loo R. P., van Gennip E. M., Bakker A. R., Hasman A., Rutten E. F. Effects measured in the evaluation of automated information systems. Medinfo. 1995;8(Pt 2):1081–1085. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES