Abstract
The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress.
Full Text
The Full Text of this article is available as a PDF (186.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chambers S. T., Kunin C. M., Miller D., Hamada A. Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J Bacteriol. 1987 Oct;169(10):4845–4847. doi: 10.1128/jb.169.10.4845-4847.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciulla R., Clougherty C., Belay N., Krishnan S., Zhou C., Byrd D., Roberts M. F. Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol. 1994 Jun;176(11):3177–3187. doi: 10.1128/jb.176.11.3177-3187.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edmonds J. S., Francesconi K. A. Transformations of arsenic in the marine environment. Experientia. 1987 May 15;43(5):553–557. doi: 10.1007/BF02143584. [DOI] [PubMed] [Google Scholar]
- Galinski E. A., Pfeiffer H. P., Trüper H. G. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985 May 15;149(1):135–139. doi: 10.1111/j.1432-1033.1985.tb08903.x. [DOI] [PubMed] [Google Scholar]
- Inbar L., Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. J Biol Chem. 1988 Nov 5;263(31):16014–16022. [PubMed] [Google Scholar]
- Kanodia S., Roberts M. F. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5217–5221. doi: 10.1073/pnas.80.17.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
- Oremland R. S. Nitrogen fixation dynamics of two diazotrophic communities in mono lake, california. Appl Environ Microbiol. 1990 Mar;56(3):614–622. doi: 10.1128/aem.56.3.614-622.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regev R., Peri I., Gilboa H., Avi-Dor Y. 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria. Bacterium Ba1 and Vibro costicola. Arch Biochem Biophys. 1990 Apr;278(1):106–112. doi: 10.1016/0003-9861(90)90237-s. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Visscher P. T., van Gemerden H. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl Environ Microbiol. 1991 Nov;57(11):3237–3242. doi: 10.1128/aem.57.11.3237-3242.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]