Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):227–232. doi: 10.1128/aem.63.1.227-232.1997

Degradation of Chlorophenols by Alcaligenes eutrophus JMP134(pJP4) in Bleached Kraft Mill Effluent

J Valenzuela, U Bumann, R Cespedes, L Padilla, B Gonzalez
PMCID: PMC1389102  PMID: 16535488

Abstract

The ability of Alcaligenes eutrophus JMP134(pJP4) to degrade 2,4-dichlorophenoxyacetic acid, 2,4,6-trichlorophenol, and other chlorophenols in a bleached kraft mill effluent was studied. The efficiency of degradation and the survival of strain JMP134 and indigenous microorganisms in short-term batch or long-term semicontinuous incubations performed in microcosms were assessed. After 6 days of incubation, 2,4-dichlorophenoxyacetate (400 ppm) or 2,4,6-trichlorophenol (40 to 100 ppm) were extensively degraded (70 to 100%). In short-term batch incubations, indigenous microorganisms were unable to degrade such of compounds. Degradation of 2,4,6-trichlorophenol by strain JMP134 was significantly lower at 200 to 400 ppm of compound. This strain was also able to degrade 2,4-dichlorophenoxyacetate, 2,4,6-trichlorophenol, 4-chlorophenol, and 2,4,5-trichlorophenol when bleached Kraft mill effluent was amended with mixtures of these compounds. On the other hand, the chlorophenol concentration and the indigenous microorganisms inhibited the growth and survival of the strain in short-term incubations. In long-term (>1-month) incubations, strain JMP134 was unable to maintain a large, stable population, although extensive 2,4,6-trichlorophenol degradation was still observed. The latter is probably due to acclimation of the indigenous microorganisms to degrade 2,4,6-trichlorophenol. Acclimation was observed only in long-term, semicontinuous microcosms.

Full Text

The Full Text of this article is available as a PDF (253.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedard D. L., Haberl M. L., May R. J., Brennan M. J. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl Environ Microbiol. 1987 May;53(5):1103–1112. doi: 10.1128/aem.53.5.1103-1112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chaudhry G. R., Chapalamadugu S. Biodegradation of halogenated organic compounds. Microbiol Rev. 1991 Mar;55(1):59–79. doi: 10.1128/mr.55.1.59-79.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clément P., Matus V., Cárdenas L., González B. Degradation of trichlorophenols by Alcaligenes eutrophus JMP134. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):51–55. doi: 10.1111/j.1574-6968.1995.tb07449.x. [DOI] [PubMed] [Google Scholar]
  4. DiGiovanni G. D., Neilson J. W., Pepper I. L., Sinclair N. A. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol. 1996 Jul;62(7):2521–2526. doi: 10.1128/aem.62.7.2521-2526.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Don R. H., Pemberton J. M. Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J Bacteriol. 1985 Jan;161(1):466–468. doi: 10.1128/jb.161.1.466-468.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Don R. H., Pemberton J. M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol. 1981 Feb;145(2):681–686. doi: 10.1128/jb.145.2.681-686.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle J. D., Short K. A., Stotzky G., King R. J., Seidler R. J., Olsen R. H. Ecologically significant effects of Pseudomonas putida PPO301(pRO103), genetically engineered to degrade 2,4-dichlorophenoxyacetate, on microbial populations and processes in soil. Can J Microbiol. 1991 Sep;37(9):682–691. doi: 10.1139/m91-116. [DOI] [PubMed] [Google Scholar]
  8. Fulthorpe R. R., Allen D. G. A comparison of organochlorine removal from bleached kraft pulp and paper-mill effluents by dehalogenating Pseudomonas, Ancylobacter and Methylobacterium strains. Appl Microbiol Biotechnol. 1995 Jan;42(5):782–789. doi: 10.1007/BF00171962. [DOI] [PubMed] [Google Scholar]
  9. Fulthorpe R. R., Liss S. N., Allen D. G. Characterization of bacteria isolated from a bleached kraft pulp mill wastewater treatment system. Can J Microbiol. 1993 Jan;39(1):13–24. doi: 10.1139/m93-003. [DOI] [PubMed] [Google Scholar]
  10. Fulthorpe R. R., Wyndham R. C. Survival and activity of a 3-chlorobenzoate-catabolic genotype in a natural system. Appl Environ Microbiol. 1989 Jun;55(6):1584–1590. doi: 10.1128/aem.55.6.1584-1590.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. González B., Acevedo C., Brezny R., Joyce T. Metabolism of chlorinated guaiacols by a guaiacol-degrading Acinetobacter junii strain. Appl Environ Microbiol. 1993 Oct;59(10):3424–3429. doi: 10.1128/aem.59.10.3424-3429.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harker A. R., Olsen R. H., Seidler R. J. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR. J Bacteriol. 1989 Jan;171(1):314–320. doi: 10.1128/jb.171.1.314-320.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holben W. E., Schroeter B. M., Calabrese V. G., Olsen R. H., Kukor J. K., Biederbeck V. O., Smith A. E., Tiedje J. M. Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid. Appl Environ Microbiol. 1992 Dec;58(12):3941–3948. doi: 10.1128/aem.58.12.3941-3948.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobsen C. S., Pedersen J. C. Growth and survival of Pseudomonas cepacia DBO1 (pRO101) in soil amended with 2,4-dichlorophenoxyacetic acid. Biodegradation. 1991;2(4):245–252. doi: 10.1007/BF00114556. [DOI] [PubMed] [Google Scholar]
  15. Jacobsen C. S., Pedersen J. C. Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated with Pseudomonas cepacia DBO1(pRO101), Alcaligenes eutrophus AEO106(pRO101) and Alcaligenes eutrophus JMP134(pJP4): effects of inoculation level and substrate concentration. Biodegradation. 1991;2(4):253–263. doi: 10.1007/BF00114557. [DOI] [PubMed] [Google Scholar]
  16. Ka J. O., Holben W. E., Tiedje J. M. Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol. 1994 Apr;60(4):1121–1128. doi: 10.1128/aem.60.4.1121-1128.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loos M. A. Indicator media for microorganisms degrading chlorinated pesticides. Can J Microbiol. 1975 Jan;21(1):104–107. doi: 10.1139/m75-016. [DOI] [PubMed] [Google Scholar]
  19. Miguez C. B., Greer C. W., Ingram J. M. Degradation of mono- and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans. Arch Microbiol. 1990;154(2):139–143. doi: 10.1007/BF00423323. [DOI] [PubMed] [Google Scholar]
  20. Nadeau L. J., Menn F. M., Breen A., Sayler G. S. Aerobic degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Appl Environ Microbiol. 1994 Jan;60(1):51–55. doi: 10.1128/aem.60.1.51-55.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nybroe O., Einarson K., Ahl T. Growth and viability of Alcaligenes eutrophus JMP134 in seawater as affected by substrate and nutrient amendment. Lett Appl Microbiol. 1996 May;22(5):366–370. doi: 10.1111/j.1472-765x.1996.tb01180.x. [DOI] [PubMed] [Google Scholar]
  22. Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu Rev Microbiol. 1988;42:263–287. doi: 10.1146/annurev.mi.42.100188.001403. [DOI] [PubMed] [Google Scholar]
  23. Schlömann M., Schmidt E., Knackmuss H. J. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol. 1990 Sep;172(9):5112–5118. doi: 10.1128/jb.172.9.5112-5118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwien U., Schmidt E. Improved degradation of monochlorophenols by a constructed strain. Appl Environ Microbiol. 1982 Jul;44(1):33–39. doi: 10.1128/aem.44.1.33-39.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Springael D., Kreps S., Mergeay M. Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol. 1993 Mar;175(6):1674–1681. doi: 10.1128/jb.175.6.1674-1681.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Top E. M., Holben W. E., Forney L. J. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 1995 May;61(5):1691–1698. doi: 10.1128/aem.61.5.1691-1698.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES