Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):233–238. doi: 10.1128/aem.63.1.233-238.1997

Microbial Communities of Continuously Cropped, Irrigated Rice Fields

W Reichardt, G Mascarina, B Padre, J Doll
PMCID: PMC1389103  PMID: 16535489

Abstract

In continuously cropped, irrigated rice fields, soil microbial biomass as measured by total phospholipid fatty acid concentrations declined during the second half of the crop cycle. This decline was also observed in other components of the microbial community assessed by viable counts, including denitrifiers and sporeformers. Simultaneous with total biomass decline was the increase in potential indicators of nutrient stress--such as ratios of cyclopropanol ((Sigma)[cy/(omega)7c]) and trans ((Sigma)[(omega)7t/(omega)7c]) phospholipid fatty acids--in plain crop soil but not in the rhizosphere. Polyhydroxyalkanoate levels were enhanced in the root environment of mature rice. Polyunsaturated eukaryotic biomarkers accounted for only 13 to 16 mol% of the total phospholipids, including 2 mol% of 18:2(omega)6, which is considered a fungal biomarker. Single biomarkers for defined physiological groups of bacteria did not follow the declining trend of total microbial biomass. Signature compounds for gram-positive and gram-negative fermenters (plasmalogen phospholipids), methanogenic bacteria (diether lipids), and methanotrophs (18:1(omega)8c) increased as the crop approached maturity. Methanotrophs were not particularly enriched in the rhizosphere. Methanogenic biomarkers were, however, most abundant in root extracts from mature rice plants. Assuming that soil microbial biomass plays a significant role as a passive nutrient pool, its reduction during the second half of the cropping season suggests a mechanism that may ultimately contribute to declining productivity in irrigated, continuous rice cropping systems.

Full Text

The Full Text of this article is available as a PDF (204.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bobbie R. J., White D. C. Characterization of benthic microbial community structure by high-resolution gas chromatography of Fatty Acid methyl esters. Appl Environ Microbiol. 1980 Jun;39(6):1212–1222. doi: 10.1128/aem.39.6.1212-1222.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Båth E., Frostegård A., Fritze H. Soil Bacterial Biomass, Activity, Phospholipid Fatty Acid Pattern, and pH Tolerance in an Area Polluted with Alkaline Dust Deposition. Appl Environ Microbiol. 1992 Dec;58(12):4026–4031. doi: 10.1128/aem.58.12.4026-4031.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COCHRAN W. G. Estimation of bacterial densities by means of the "most probable number". Biometrics. 1950 Jun;6(2):105–116. [PubMed] [Google Scholar]
  5. COLLINS V. G., WILLOUGHBY L. G. The distribution of bacteria and fungal spores in Blelham Tarn with particular reference to an experimental overturn. Arch Mikrobiol. 1962;43:294–307. doi: 10.1007/BF00405972. [DOI] [PubMed] [Google Scholar]
  6. Doddema H. J., Vogels G. D. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol. 1978 Nov;36(5):752–754. doi: 10.1128/aem.36.5.752-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Findlay R. H., White D. C. Polymeric Beta-Hydroxyalkanoates from Environmental Samples and Bacillus megaterium. Appl Environ Microbiol. 1983 Jan;45(1):71–78. doi: 10.1128/aem.45.1.71-78.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frostegård A., Tunlid A., Båth E. Phospholipid Fatty Acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol. 1993 Nov;59(11):3605–3617. doi: 10.1128/aem.59.11.3605-3617.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guckert J. B., Ringelberg D. B., White D. C., Hanson R. S., Bratina B. J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol. 1991 Nov;137(11):2631–2641. doi: 10.1099/00221287-137-11-2631. [DOI] [PubMed] [Google Scholar]
  10. Heipieper H. J., Diefenbach R., Keweloh H. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol. 1992 Jun;58(6):1847–1852. doi: 10.1128/aem.58.6.1847-1852.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. King G. M. Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol. 1994 Sep;60(9):3220–3227. doi: 10.1128/aem.60.9.3220-3227.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mancuso C. A., Nichols P. D., White D. C. A method for the separation and characterization of archaebacterial signature ether lipids. J Lipid Res. 1986 Jan;27(1):49–56. [PubMed] [Google Scholar]
  13. Nickels J. S., King J. D., White D. C. Poly-beta-Hydroxybutyrate Accumulation as a Measure of Unbalanced Growth of the Estuarine Detrital Microbiota. Appl Environ Microbiol. 1979 Mar;37(3):459–465. doi: 10.1128/aem.37.3.459-465.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Novitsky J. A. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community. Appl Environ Microbiol. 1987 Oct;53(10):2368–2372. doi: 10.1128/aem.53.10.2368-2372.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Petersen S. O., Klug M. J. Effects of sieving, storage, and incubation temperature on the phospholipid Fatty Acid profile of a soil microbial community. Appl Environ Microbiol. 1994 Jul;60(7):2421–2430. doi: 10.1128/aem.60.7.2421-2430.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pitt T. L., Dey D. A method for the detection of gelatinase production by bacteria. J Appl Bacteriol. 1970 Dec;33(4):687–691. doi: 10.1111/j.1365-2672.1970.tb02251.x. [DOI] [PubMed] [Google Scholar]
  17. Roslev P., King G. M. Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Appl Environ Microbiol. 1995 Apr;61(4):1563–1570. doi: 10.1128/aem.61.4.1563-1570.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vestal J. R., White D. C. Lipid analysis in microbial ecology: quantitative approaches to the study of microbial communities. Bioscience. 1989 Sep;39(8):535–541. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES