Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jan;63(1):347–350. doi: 10.1128/aem.63.1.347-350.1997

Characterization of Di-myo-Inositol-1,1(prm1)-Phosphate in the Hyperthermophilic Bacterium Thermotoga maritima

V Ramakrishnan, M Verhagen, M Adams
PMCID: PMC1389112  PMID: 16535498

Abstract

Di-myo-inositol-1,1(prm1)-phosphate (DIP) is present at a significant concentration ((symbl)160 nmol/mg of protein) in the cytoplasm of the hyperthermophilic bacterium Thermotoga maritima. The concentration of DIP was independent of the pH of the growth medium or the cell growth phase but increased with increasing concentrations of NaCl in the growth medium, reaching a maximum ((symbl)450 nmol/mg of protein) at 0.4 to 0.6 M NaCl. A large-scale purification procedure for DIP which yields approximately 18 g of DIP per kg of cells (wet weight) is described. Purified DIP was stable at 90(deg)C for at least 5 h. The presence of DIP (50 mM) did not increase the stability at 90(deg)C of pure forms of the hydrogenase or pyruvate ferredoxin oxidoreductase of T. maritima, suggesting that DIP is not a general thermoprotectant.

Full Text

The Full Text of this article is available as a PDF (184.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol. 1993;47:627–658. doi: 10.1146/annurev.mi.47.100193.003211. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W., Perler F. B., Kelly R. M. Extremozymes: expanding the limits of biocatalysis. Biotechnology (N Y) 1995 Jul;13(7):662–668. doi: 10.1038/nbt0795-662. [DOI] [PubMed] [Google Scholar]
  3. Anderson W. A., Magasanik B. The pathway of myo-inositol degradation in Aerobacter aerogenes. Conversion of 2-deoxy-5-keto-D-gluconic acid to glycolytic intermediates. J Biol Chem. 1971 Sep 25;246(18):5662–5675. [PubMed] [Google Scholar]
  4. Blamey J. M., Adams M. W. Characterization of an ancestral type of pyruvate ferredoxin oxidoreductase from the hyperthermophilic bacterium, Thermotoga maritima. Biochemistry. 1994 Feb 1;33(4):1000–1007. doi: 10.1021/bi00170a019. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Ciulla R. A., Burggraf S., Stetter K. O., Roberts M. F. Occurrence and Role of Di-myo-Inositol-1,1'-Phosphate in Methanococcus igneus. Appl Environ Microbiol. 1994 Oct;60(10):3660–3664. doi: 10.1128/aem.60.10.3660-3664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorkovenko A., Roberts M. F. Cyclic 2,3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. J Bacteriol. 1993 Jul;175(13):4087–4095. doi: 10.1128/jb.175.13.4087-4095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hensel R., Laumann S., Lang J., Heumann H., Lottspeich F. Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem. 1987 Dec 30;170(1-2):325–333. doi: 10.1111/j.1432-1033.1987.tb13703.x. [DOI] [PubMed] [Google Scholar]
  9. Juszczak A., Aono S., Adams M. W. The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem. 1991 Jul 25;266(21):13834–13841. [PubMed] [Google Scholar]
  10. Kanodia S., Roberts M. F. Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5217–5221. doi: 10.1073/pnas.80.17.5217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martins L. O., Santos H. Accumulation of Mannosylglycerate and Di-myo-Inositol-Phosphate by Pyrococcus furiosus in Response to Salinity and Temperature. Appl Environ Microbiol. 1995 Sep;61(9):3299–3303. doi: 10.1128/aem.61.9.3299-3303.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ravot G., Ollivier B., Magot M., Patel B., Crolet J., Fardeau M., Garcia J. Thiosulfate reduction, an important physiological feature shared by members of the order thermotogales. Appl Environ Microbiol. 1995 May;61(5):2053–2055. doi: 10.1128/aem.61.5.2053-2055.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scholz S., Sonnenbichler J., Schäfer W., Hensel R. Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 1992 Jul 20;306(2-3):239–242. doi: 10.1016/0014-5793(92)81008-a. [DOI] [PubMed] [Google Scholar]
  14. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES