Abstract
A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP.
Full Text
The Full Text of this article is available as a PDF (376.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behki R., Topp E., Dick W., Germon P. Metabolism of the herbicide atrazine by Rhodococcus strains. Appl Environ Microbiol. 1993 Jun;59(6):1955–1959. doi: 10.1128/aem.59.6.1955-1959.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook A. M., Beilstein P., Grossenbacher H., Hütter R. Ring cleavage and degradative pathway of cyanuric acid in bacteria. Biochem J. 1985 Oct 1;231(1):25–30. doi: 10.1042/bj2310025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly P. K., Entry J. A., Crawford D. L. Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol. 1993 Aug;59(8):2642–2647. doi: 10.1128/aem.59.8.2642-2647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton R. W., Karns J. S. Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J Bacteriol. 1991 Feb;173(3):1215–1222. doi: 10.1128/jb.173.3.1215-1222.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank R., Sirons G. J. Dissipation of atrazine residues from soils. Bull Environ Contam Toxicol. 1985 Apr;34(4):541–548. doi: 10.1007/BF01609773. [DOI] [PubMed] [Google Scholar]
- Jessee J. A., Benoit R. E., Hendricks A. C., Allen G. C., Neal J. L. Anaerobic degradation of cyanuric Acid, cysteine, and atrazine by a facultative anaerobic bacterium. Appl Environ Microbiol. 1983 Jan;45(1):97–102. doi: 10.1128/aem.45.1.97-102.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jutzi K., Cook A. M., Hütter R. The degradative pathway of the s-triazine melamine. The steps to ring cleavage. Biochem J. 1982 Dec 15;208(3):679–684. doi: 10.1042/bj2080679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman D. D., Kearney P. C. Microbial degradation of s-triazine herbicides. Residue Rev. 1970;32:235–265. doi: 10.1007/978-1-4615-8464-3_9. [DOI] [PubMed] [Google Scholar]
- Mandelbaum R. T., Allan D. L., Wackett L. P. Isolation and Characterization of a Pseudomonas sp. That Mineralizes the s-Triazine Herbicide Atrazine. Appl Environ Microbiol. 1995 Apr;61(4):1451–1457. doi: 10.1128/aem.61.4.1451-1457.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandelbaum R. T., Wackett L. P., Allan D. L. Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl Environ Microbiol. 1993 Jun;59(6):1695–1701. doi: 10.1128/aem.59.6.1695-1701.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moretain J. P., Boisseau J. Excretion of penicillins and cephalexin in bovine milk following intramammary administration. Food Addit Contam. 1989 Jan-Mar;6(1):79–89. doi: 10.1080/02652038909373741. [DOI] [PubMed] [Google Scholar]
- Mougin C., Laugero C., Asther M., Dubroca J., Frasse P., Asther M. Biotransformation of the Herbicide Atrazine by the White Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1994 Feb;60(2):705–708. doi: 10.1128/aem.60.2.705-708.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulbry W. W. Purification and Characterization of an Inducible s-Triazine Hydrolase from Rhodococcus corallinus NRRL B-15444R. Appl Environ Microbiol. 1994 Feb;60(2):613–618. doi: 10.1128/aem.60.2.613-618.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radosevich M., Traina S. J., Hao Y. L., Tuovinen O. H. Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol. 1995 Jan;61(1):297–302. doi: 10.1128/aem.61.1.297-302.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao Z. Q., Seffens W., Mulbry W., Behki R. M. Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J Bacteriol. 1995 Oct;177(20):5748–5755. doi: 10.1128/jb.177.20.5748-5755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanze-Kontchou C., Gschwind N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol. 1994 Dec;60(12):4297–4302. doi: 10.1128/aem.60.12.4297-4302.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Souza M. L., Sadowsky M. J., Wackett L. P. Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. J Bacteriol. 1996 Aug;178(16):4894–4900. doi: 10.1128/jb.178.16.4894-4900.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]