Abstract
We present an improvement of the INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride)] reduction method using Cyto-Clear slides, the fluorochrome DAPI (4(prm1),6(prm1)-diamidino-2 phenylindole), and an image analysis system. With this method we were able to simultaneously measure cell dimensions and formazan crystals as indicators of the respiratory activity of single bacteria. The method was tested on a natural bacterioplankton community of an oligotrophic high mountain lake (Gossenkollesee, Tyrolean Alps, Austria, 2,417 m above sea level) in midwinter ((symbl)1-m-thick ice and snow layer; dissolved organic carbon, 0.51 mg liter(sup-1); water temperature, 2(deg)C). About 25% of planktonic bacteria were respiratorily active, and a complex pattern of bacterial morphologies and specific respiratory activities was observed during a time series of INT incubation. Rod-shaped bacteria with cell lengths of between 1.6 and 4.8 (mu)m already showed visible activity after 0.5 h of INT incubation. Small cells (rods and cocci) in the size fraction <1.6 (mu)m and long filamentous bacteria (up to 120 (mu)m) were visibly active only after a 2-h incubation period. After 8 h of incubation, more than 90% of all cells between 3.2 and 6.4 (mu)m in cell length were respiratorily active, whereas only 5% of cells <1.6 (mu)m and 50% of filamentous bacteria contained formazan grains. We could distinguish five major bacterial phenotypes that showed distinct activity patterns with respect to incubation period and numbers and sizes of formazan crystals. There was no correlation between the total formazan volume per active cell and bacterial cell volume, and for any size class of active bacteria, total formazan volumes varied by about 2 orders of magnitude after 8 h of incubation. This indicates that cell-specific activity is extremely variable and is not related to size and that a small portion of all cells may account for the overall activity.
Full Text
The Full Text of this article is available as a PDF (266.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfreider A., Pernthaler J., Amann R., Sattler B., Glockner F., Wille A., Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol. 1996 Jun;62(6):2138–2144. doi: 10.1128/aem.62.6.2138-2144.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felip M., Sattler B., Psenner R., Catalan J. Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol. 1995 Jun;61(6):2394–2401. doi: 10.1128/aem.61.6.2394-2401.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gonzalez J. M., Sherr E. B., Sherr B. F. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol. 1990 Mar;56(3):583–589. doi: 10.1128/aem.56.3.583-589.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kepner R. L., Jr, Pratt J. R. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev. 1994 Dec;58(4):603–615. doi: 10.1128/mr.58.4.603-615.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjelleberg S., Albertson N., Flärdh K., Holmquist L., Jouper-Jaan A., Marouga R., Ostling J., Svenblad B., Weichart D. How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek. 1993;63(3-4):333–341. doi: 10.1007/BF00871228. [DOI] [PubMed] [Google Scholar]
- McFeters G. A., Yu F. P., Pyle B. H., Stewart P. S. Physiological assessment of bacteria using fluorochromes. J Microbiol Methods. 1995 Jan;21(1):1–13. doi: 10.1016/0167-7012(94)00027-5. [DOI] [PubMed] [Google Scholar]
- Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 1992 Jun;58(6):1801–1808. doi: 10.1128/aem.58.6.1801-1808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherr B. F., Sherr E. B., Fallon R. D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microbiol. 1987 May;53(5):958–965. doi: 10.1128/aem.53.5.958-965.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simek K., Vrba J., Pernthaler J., Posch T., Hartman P., Nedoma J., Psenner R. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol. 1997 Feb;63(2):587–595. doi: 10.1128/aem.63.2.587-595.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommaruga R., Psenner R. Permanent presence of grazing-resistant bacteria in a hypertrophic lake. Appl Environ Microbiol. 1995 Sep;61(9):3457–3459. doi: 10.1128/aem.61.9.3457-3459.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thom S. M., Horobin R. W., Seidler E., Barer M. R. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. J Appl Bacteriol. 1993 Apr;74(4):433–443. doi: 10.1111/j.1365-2672.1993.tb05151.x. [DOI] [PubMed] [Google Scholar]
- Zimmermann R., Iturriaga R., Becker-Birck J. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 1978 Dec;36(6):926–935. doi: 10.1128/aem.36.6.926-935.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]