Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):1024–1027. doi: 10.1128/aem.63.3.1024-1027.1997

Binding of Bacillus thuringiensis Cry1Ac Toxin to Aminopeptidase in Susceptible and Resistant Diamondback Moths (Plutella xylostella)

K Luo, B E Tabashnik, M J Adang
PMCID: PMC1389130  PMID: 16535536

Abstract

Bacillus thuringiensis Cry1Ac toxin bound to a 120-kDa protein isolated from the brush border membranes of both susceptible and resistant larvae of Plutella xylostella, the diamondback moth. The 120-kDa protein was purified by Cry1Ac toxin affinity chromatography. Like Cry1Ac-binding aminopeptidase N (EC 3.4.11.2) from other insects, this protein was eluted from the affinity column with 200 mM N-acetylgalactosamine. The purified protein had aminopeptidase activity and bound Cry1Ac toxin on ligand blots. Purified aminopeptidase was recognized by antibodies to the cross-reacting determinant found on phosphatidylinositol-specific phospholipase C-solubilized proteins. The results show that the presence of Cry1Ac-binding aminopeptidase in the brush border membrane is not sufficient to confer susceptibility to Cry1Ac. Furthermore, the results do not support the hypothesis that resistance to Cry1Ac was caused by lack of a Cry1Ac-binding aminopeptidase.

Full Text

The Full Text of this article is available as a PDF (452.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Escriche B., Tabashnik B., Finson N., Ferré J. Immunohistochemical detection of binding of CryIA crystal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella (L.) from Hawaii. Biochem Biophys Res Commun. 1995 Jul 17;212(2):388–395. doi: 10.1006/bbrc.1995.1982. [DOI] [PubMed] [Google Scholar]
  2. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Garczynski S. F., Crim J. W., Adang M. J. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Appl Environ Microbiol. 1991 Oct;57(10):2816–2820. doi: 10.1128/aem.57.10.2816-2820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gill S. S., Cowles E. A., Francis V. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem. 1995 Nov 10;270(45):27277–27282. doi: 10.1074/jbc.270.45.27277. [DOI] [PubMed] [Google Scholar]
  5. Gould F., Martinez-Ramirez A., Anderson A., Ferre J., Silva F. J., Moar W. J. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7986–7990. doi: 10.1073/pnas.89.17.7986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knight P. J., Crickmore N., Ellar D. J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol. 1994 Feb;11(3):429–436. doi: 10.1111/j.1365-2958.1994.tb00324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knight P. J., Knowles B. H., Ellar D. J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem. 1995 Jul 28;270(30):17765–17770. doi: 10.1074/jbc.270.30.17765. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lee M. K., Rajamohan F., Gould F., Dean D. H. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol. 1995 Nov;61(11):3836–3842. doi: 10.1128/aem.61.11.3836-3842.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacIntosh S. C., Stone T. B., Jokerst R. S., Fuchs R. L. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8930–8933. doi: 10.1073/pnas.88.20.8930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Masson L., Lu Y. J., Mazza A., Brousseau R., Adang M. J. The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem. 1995 Sep 1;270(35):20309–20315. doi: 10.1074/jbc.270.35.20309. [DOI] [PubMed] [Google Scholar]
  12. Masson L., Mazza A., Brousseau R., Tabashnik B. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. J Biol Chem. 1995 May 19;270(20):11887–11896. doi: 10.1074/jbc.270.20.11887. [DOI] [PubMed] [Google Scholar]
  13. McGaughey W. H. Insect Resistance to the Biological Insecticide Bacillus thuringiensis. Science. 1985 Jul 12;229(4709):193–195. doi: 10.1126/science.229.4709.193. [DOI] [PubMed] [Google Scholar]
  14. Moar W. J., Pusztai-Carey M., Van Faassen H., Bosch D., Frutos R., Rang C., Luo K., Adang M. J. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol. 1995 Jun;61(6):2086–2092. doi: 10.1128/aem.61.6.2086-2092.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moss D. W. Perspectives in alkaline phosphatase research. Clin Chem. 1992 Dec;38(12):2486–2492. [PubMed] [Google Scholar]
  16. Nemoto E., Stohlman S., Dennert G. Release of a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase from cytotoxic T cells upon activation. J Immunol. 1996 Jan 1;156(1):85–92. [PubMed] [Google Scholar]
  17. Oppert B., Kramer K. J., Johnson D. E., MacIntosh S. C., McGaughey W. H. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem Biophys Res Commun. 1994 Feb 15;198(3):940–947. doi: 10.1006/bbrc.1994.1134. [DOI] [PubMed] [Google Scholar]
  18. Sangadala S., Walters F. S., English L. H., Adang M. J. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb(+)-K+ efflux in vitro. J Biol Chem. 1994 Apr 1;269(13):10088–10092. [PubMed] [Google Scholar]
  19. Tabashnik B. E., Finson N., Groeters F. R., Moar W. J., Johnson M. W., Luo K., Adang M. J. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4120–4124. doi: 10.1073/pnas.91.10.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tabashnik B. E., Finson N., Johnson M. W., Moar W. J. Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth (Lepidoptera: Plutellidae). Appl Environ Microbiol. 1993 May;59(5):1332–1335. doi: 10.1128/aem.59.5.1332-1335.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tang J. D., Shelton A. M., Van Rie J., De Roeck S., Moar W. J., Roush R. T., Peferoen M. Toxicity of Bacillus thuringiensis Spore and Crystal Protein to Resistant Diamondback Moth (Plutella xylostella). Appl Environ Microbiol. 1996 Feb;62(2):564–569. doi: 10.1128/aem.62.2.564-569.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vadlamudi R. K., Ji T. H., Bulla L. A., Jr A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J Biol Chem. 1993 Jun 15;268(17):12334–12340. [PubMed] [Google Scholar]
  23. Vadlamudi R. K., Weber E., Ji I., Ji T. H., Bulla L. A., Jr Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem. 1995 Mar 10;270(10):5490–5494. doi: 10.1074/jbc.270.10.5490. [DOI] [PubMed] [Google Scholar]
  24. Valaitis A. P., Lee M. K., Rajamohan F., Dean D. H. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis. Insect Biochem Mol Biol. 1995 Dec;25(10):1143–1151. doi: 10.1016/0965-1748(95)00050-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES