Abstract
The physiological changes of Vibrio anguillarum in response to growth in salmon intestinal mucus were investigated. Growth, survival, and changes in protein expression during growth in media supplemented with mucus were compared to growth and starvation in the identical media without mucus. V. anguillarum exhibited a rapid decline in CFU following growth in mucus as the sole carbon source. No such decline was observed in Luria broth with a 2% NaCl concentration, in glucose-minimal broth (3M), or during starvation in a carbon-, nitrogen-, and phosphorus-free salt solution (NSS). The changes in protein expression during growth in mucus were examined by labeling cells with [(sup35)S]methionine and analyzing the labeled proteins by one- and two-dimensional gel electrophoresis and autoradiography. Comparison of [(sup35)S]methionine-labeled proteins from mucus-grown cells with 3M-grown cells and NSS-starved cells revealed four de novo mucus-inducible proteins (Mips). These Mips were localized in the membrane fraction of V. anguillarum. Additionally, at least one other membrane protein was found to have increased expression in response to growth in mucus.
Full Text
The Full Text of this article is available as a PDF (458.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertson N. H., Nyström T., Kjelleberg S. Exoprotease Activity of Two Marine Bacteria during Starvation. Appl Environ Microbiol. 1990 Jan;56(1):218–223. doi: 10.1128/aem.56.1.218-223.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blomberg L., Gustafsson L., Cohen P. S., Conway P. L., Blomberg A. Growth of Escherichia coli K88 in piglet ileal mucus: protein expression as an indicator of type of metabolism. J Bacteriol. 1995 Dec;177(23):6695–6703. doi: 10.1128/jb.177.23.6695-6703.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowser P. R., Rosemark R., Reiner C. R. A preliminary report of vibriosis in cultured American lobsters, Homarus americanus. J Invertebr Pathol. 1981 Jan;37(1):80–85. doi: 10.1016/0022-2011(81)90058-6. [DOI] [PubMed] [Google Scholar]
- Burghoff R. L., Pallesen L., Krogfelt K. A., Newman J. V., Richardson M., Bliss J. L., Laux D. C., Cohen P. S. Utilization of the mouse large intestine to select an Escherichia coli F-18 DNA sequence that enhances colonizing ability and stimulates synthesis of type 1 fimbriae. Infect Immun. 1993 Apr;61(4):1293–1300. doi: 10.1128/iai.61.4.1293-1300.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P. S., Laux D. C. Bacterial adhesion to and penetration of intestinal mucus in vitro. Methods Enzymol. 1995;253:309–314. doi: 10.1016/s0076-6879(95)53026-6. [DOI] [PubMed] [Google Scholar]
- Enger O., Husevåg B., Goksøyr J. Presence of the fish pathogen Vibrio salmonicida in fish farm sediments. Appl Environ Microbiol. 1989 Nov;55(11):2815–2818. doi: 10.1128/aem.55.11.2815-2818.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrell D. H., Crosa J. H. Purification and characterization of a secreted protease from the pathogenic marine bacterium Vibrio anguillarum. Biochemistry. 1991 Apr 9;30(14):3432–3436. doi: 10.1021/bi00228a012. [DOI] [PubMed] [Google Scholar]
- Foster J. W., Spector M. P. Phosphate starvation regulon of Salmonella typhimurium. J Bacteriol. 1986 May;166(2):666–669. doi: 10.1128/jb.166.2.666-669.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freter R., Brickner H., Botney M., Cleven D., Aranki A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun. 1983 Feb;39(2):676–685. doi: 10.1128/iai.39.2.676-685.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groat R. G., Schultz J. E., Zychlinsky E., Bockman A., Matin A. Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol. 1986 Nov;168(2):486–493. doi: 10.1128/jb.168.2.486-493.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjelleberg S., Hermansson M., Mårdén P., Jones G. W. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol. 1987;41:25–49. doi: 10.1146/annurev.mi.41.100187.000325. [DOI] [PubMed] [Google Scholar]
- Krivan H. C., Franklin D. P., Wang W., Laux D. C., Cohen P. S. Phosphatidylserine found in intestinal mucus serves as a sole source of carbon and nitrogen for salmonellae and Escherichia coli. Infect Immun. 1992 Sep;60(9):3943–3946. doi: 10.1128/iai.60.9.3943-3946.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marouga R., Kjelleberg S. Synthesis of immediate upshift (Iup) proteins during recovery of marine Vibrio sp. strain S14 subjected to long-term carbon starvation. J Bacteriol. 1996 Feb;178(3):817–822. doi: 10.1128/jb.178.3.817-822.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Myhal M. L., Laux D. C., Cohen P. S. Relative colonizing abilities of human fecal and K 12 strains of Escherichia coli in the large intestines of streptomycin-treated mice. Eur J Clin Microbiol. 1982 Jun;1(3):186–192. doi: 10.1007/BF02019621. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman J. V., Kolter R., Laux D. C., Cohen P. S. Role of leuX in Escherichia coli colonization of the streptomycin-treated mouse large intestine. Microb Pathog. 1994 Nov;17(5):301–311. doi: 10.1006/mpat.1994.1076. [DOI] [PubMed] [Google Scholar]
- Nyström T., Albertson N., Kjelleberg S. Synthesis of membrane and periplasmic proteins during starvation of a marine Vibrio sp. J Gen Microbiol. 1988 Jun;134(6):1645–1651. doi: 10.1099/00221287-134-6-1645. [DOI] [PubMed] [Google Scholar]
- Nyström T., Flärdh K., Kjelleberg S. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol. 1990 Dec;172(12):7085–7097. doi: 10.1128/jb.172.12.7085-7097.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyström T., Olsson R. M., Kjelleberg S. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Appl Environ Microbiol. 1992 Jan;58(1):55–65. doi: 10.1128/aem.58.1.55-65.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Scopio A., Johnson P., Laquerre A., Nelson D. R. Subcellular localization and chaperone activities of Borrelia burgdorferi Hsp60 and Hsp70. J Bacteriol. 1994 Nov;176(21):6449–6456. doi: 10.1128/jb.176.21.6449-6456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wadolkowski E. A., Laux D. C., Cohen P. S. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect Immun. 1988 May;56(5):1030–1035. doi: 10.1128/iai.56.5.1030-1035.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerdahl A., Olsson J. C., Kjelleberg S., Conway P. L. Isolation and characterization of turbot (Scophtalmus maximus)-associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol. 1991 Aug;57(8):2223–2228. doi: 10.1128/aem.57.8.2223-2228.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]