Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Mar;63(3):1175–1177. doi: 10.1128/aem.63.3.1175-1177.1997

Initial Steps in the Degradation of Methoxychlor by the White Rot Fungus Phanerochaete chrysosporium

M Grifoll, K E Hammel
PMCID: PMC1389141  PMID: 16535547

Abstract

The white rot fungus Phanerochaete chrysosporium mineralized [ring-(sup14)C]methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane] and metabolized it to a variety of products. The three most prominent of these were identified as the 1-dechloro derivative 1,1-dichloro-2,2-bis(4-methoxyphenyl)ethane, the 2-hydroxy derivative 2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethanol, and the 1-dechloro-2-hydroxy derivative 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethanol by comparison of the derivatives with authentic standards in chromatographic and mass spectrometric experiments. In addition, the 1-dechloro-2-hydroxy derivative was identified from its (sup1)H nuclear magnetic resonance spectrum. The 1-dechloro and 2-hydroxy derivatives were both converted to the 1-dechloro-2-hydroxy derivative by the fungus; i.e., there was no requirement that dechlorination precede hydroxylation or vice versa. All three metabolites were mineralized and are therefore likely intermediates in the degradation of methoxychlor by P. chrysosporium.

Full Text

The Full Text of this article is available as a PDF (85.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baarschers W. H., Bharath A. I., Elvish J., Davies M. The biodegradation of methoxychlor by Klebsiella pneumoniae. Can J Microbiol. 1982 Feb;28(2):176–179. doi: 10.1139/m82-023. [DOI] [PubMed] [Google Scholar]
  2. Bumpus J. A., Aust S. D. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1987 Sep;53(9):2001–2008. doi: 10.1128/aem.53.9.2001-2008.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hammel K. E., Green B., Gai W. Z. Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10605–10608. doi: 10.1073/pnas.88.23.10605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Joshi D. K., Gold M. H. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Jun;59(6):1779–1785. doi: 10.1128/aem.59.6.1779-1785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kirk T. K., Connors W. J., Bleam R. D., Hackett W. F., Zeikus J. G. Preparation and microbial decomposition of synthetic [14C]ligins. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2515–2519. doi: 10.1073/pnas.72.7.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kupfer D., Bulger W. H., Theoharides A. D. Metabolism of methoxychlor by hepatic P-450 monooxygenases in rat and human. 1. Characterization of a novel catechol metabolite. Chem Res Toxicol. 1990 Jan-Feb;3(1):8–16. doi: 10.1021/tx00013a002. [DOI] [PubMed] [Google Scholar]
  7. Valli K., Wariishi H., Gold M. H. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol. 1992 Apr;174(7):2131–2137. doi: 10.1128/jb.174.7.2131-2137.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES