Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1744–1748. doi: 10.1128/aem.63.5.1744-1748.1997

Production and Purification of Remazol Brilliant Blue R Decolorizing Peroxidase from the Culture Filtrate of Pleurotus ostreatus

K Shin, I Oh, C Kim
PMCID: PMC1389145  PMID: 16535590

Abstract

An extracellular H(inf2)O(inf2)-requiring Remazol brilliant blue R (RBBR) decolorizing enzymatic activity was found in the culture medium of Pleurotus ostreatus. The enzymatic activity was maximally obtained in idiophase, and the optimum C/N ratio was 24. High C/N ratios repressed the enzymatic activity, and addition of veratryl alcohol had no effect on the production of enzyme. The enzyme was purified by ammonium sulfate fractionation, Sephacryl S-200 HR chromatography, DEAE Sepharose CL-6B chromatography, and Mono Q chromatography. The purification of RBBR decolorizing peroxidase, as judged by the final specific activity of 6.00 U/mg, was 54.5-fold, with a yield of 9.9%. The molecular mass of the native enzyme determined by gel permeation chromatography was found to be about 73 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was a monomer with a molecular mass of 71 kDa. The enzyme was optimally active at pH 3.0 to 3.5 and at 25(deg)C. Under standard assay conditions, the apparent K(infm) values of the enzyme toward RBBR and H(inf2)O(inf2) were 10.99 and 32.97 (mu)M, respectively. The enzyme had affinity toward various phenolic compounds and artificial dyes, and it was inhibited by Na(inf2)S(inf2)O(inf5), potassium cyanide, NaN(inf3), and cysteine. The absorption spectrum of the enzyme exhibited maxima at 407, 510, and 640 nm. The addition of H(inf2)O(inf2) to the enzyme resulted in an absorbance decrease at 407 and 510 nm.

Full Text

The Full Text of this article is available as a PDF (879.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourbonnais R., Paice M. G. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J. 1988 Oct 15;255(2):445–450. doi: 10.1042/bj2550445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Claiborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem. 1979 May 25;254(10):4245–4252. [PubMed] [Google Scholar]
  3. Gold M. H., Kuwahara M., Chiu A. A., Glenn J. K. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1984 Nov 1;234(2):353–362. doi: 10.1016/0003-9861(84)90280-7. [DOI] [PubMed] [Google Scholar]
  4. Han Y. H., Shin K. S., Youn H. D., Hah Y. C., Kang S. O. Mode of action and active site of an extracellular peroxidase from Pleurotus ostreatus. Biochem J. 1996 Mar 1;314(Pt 2):421–426. doi: 10.1042/bj3140421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kang S. O., Shin K. S., Han Y. H., Youn H. D., Hah Y. C. Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochim Biophys Acta. 1993 May 13;1163(2):158–164. doi: 10.1016/0167-4838(93)90177-s. [DOI] [PubMed] [Google Scholar]
  6. Kimura Y., Asada Y., Kuwahara M. Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol. 1990 Jan;32(4):436–442. doi: 10.1007/BF00903779. [DOI] [PubMed] [Google Scholar]
  7. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  8. Kjalke M., Andersen M. B., Schneider P., Christensen B., Schülein M., Welinder K. G. Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim Biophys Acta. 1992 Apr 17;1120(3):248–256. doi: 10.1016/0167-4838(92)90244-8. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Momohara I., Matsumoto Y., Ishizu A. Involvement of veratryl alcohol and active oxygen species in degradation of a quinone compound by lignin peroxidase. FEBS Lett. 1990 Oct 29;273(1-2):159–162. doi: 10.1016/0014-5793(90)81074-x. [DOI] [PubMed] [Google Scholar]
  12. Neuhoff V., Arold N., Taube D., Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988 Jun;9(6):255–262. doi: 10.1002/elps.1150090603. [DOI] [PubMed] [Google Scholar]
  13. Ollikka P., Alhonmäki K., Leppänen V. M., Glumoff T., Raijola T., Suominen I. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Dec;59(12):4010–4016. doi: 10.1128/aem.59.12.4010-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
  15. Paszczyński A., Huynh V. B., Crawford R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Feb 1;244(2):750–765. doi: 10.1016/0003-9861(86)90644-2. [DOI] [PubMed] [Google Scholar]
  16. Reid I. D. Effects of Nitrogen Supplements on Degradation of Aspen Wood Lignin and Carbohydrate Components by Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Mar;45(3):830–837. doi: 10.1128/aem.45.3.830-837.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rothschild N., Hadar Y., Dosoretz C. Ligninolytic System Formation by Phanerochaete chrysosporium in Air. Appl Environ Microbiol. 1995 May;61(5):1833–1838. doi: 10.1128/aem.61.5.1833-1838.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sannia G., Limongi P., Cocca E., Buonocore F., Nitti G., Giardina P. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim Biophys Acta. 1991 Jan 23;1073(1):114–119. doi: 10.1016/0304-4165(91)90190-r. [DOI] [PubMed] [Google Scholar]
  19. Shin K. S., Youn H. D., Han Y. H., Kang S. O., Hah Y. C. Purification and characterisation of D-glucose oxidase from white-rot fungus Pleurotus ostreatus. Eur J Biochem. 1993 Aug 1;215(3):747–752. doi: 10.1111/j.1432-1033.1993.tb18088.x. [DOI] [PubMed] [Google Scholar]
  20. Vyas B. R., Molitoris H. P. Involvement of an extracellular H2O2-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Appl Environ Microbiol. 1995 Nov;61(11):3919–3927. doi: 10.1128/aem.61.11.3919-3927.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES