Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1749–1755. doi: 10.1128/aem.63.5.1749-1755.1997

Manganese Is Not Required for Biobleaching of Oxygen-Delignified Kraft Pulp by the White Rot Fungus Bjerkandera sp. Strain BOS55

M T Moreira, G Feijoo, R Sierra-Alvarez, J Lema, J A Field
PMCID: PMC1389146  PMID: 16535591

Abstract

The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-dependent peroxidase (MnP) production. However, the biobleaching was not affected by the Mn nutrient regimen, ranging from 1,000 (mu)M added Mn to below the detection limit of 0.26 (mu)M Mn in EDTA-extracted pulp medium. The lowest Mn concentration tested was at least several orders of magnitude lower than the K(infm) known for MnP. Consequently, it was concluded that Mn is not required for biobleaching in Bjerkandera sp. strain BOS55. Nonetheless, fast protein liquid chromatography profiles indicated that MnP was the predominant oxidative enzyme produced even under culture conditions in the near absence of manganese. High nitrogen (22 mM N) and exogenous veratryl alcohol (2 mM) repressed biobleaching in Mn-deficient but not in Mn-sufficient culture medium. No correlation was observed between the titers of extracellular peroxidases and the biobleaching. However, the decolorization rate of the polyaromatic dye Poly R-478 was moderately correlated to the biobleaching under a wide range of Mn and N nutrient regimens.

Full Text

The Full Text of this article is available as a PDF (349.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addleman K., Archibald F. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor. Appl Environ Microbiol. 1993 Jan;59(1):266–273. doi: 10.1128/aem.59.1.266-273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Addleman K., Dumonceaux T., Paice M. G., Bourbonnais R., Archibald F. S. Production and Characterization of Trametes versicolor Mutants Unable To Bleach Hardwood Kraft Pulp. Appl Environ Microbiol. 1995 Oct;61(10):3687–3694. doi: 10.1128/aem.61.10.3687-3694.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archibald F. S. Lignin Peroxidase Activity Is Not Important in Biological Bleaching and Delignification of Unbleached Kraft Pulp by Trametes versicolor. Appl Environ Microbiol. 1992 Sep;58(9):3101–3109. doi: 10.1128/aem.58.9.3101-3109.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonnarme P., Jeffries T. W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Appl Environ Microbiol. 1990 Jan;56(1):210–217. doi: 10.1128/aem.56.1.210-217.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourbonnais R., Paice M. G. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J. 1988 Oct 15;255(2):445–450. doi: 10.1042/bj2550445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. A., Alic M., Gold M. H. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol. 1991 Jul;173(13):4101–4106. doi: 10.1128/jb.173.13.4101-4106.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. A., Glenn J. K., Gold M. H. Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol. 1990 Jun;172(6):3125–3130. doi: 10.1128/jb.172.6.3125-3130.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Camarero S., Bockle B., Martinez M. J., Martinez A. T. Manganese-Mediated Lignin Degradation by Pleurotus pulmonarius. Appl Environ Microbiol. 1996 Mar;62(3):1070–1072. doi: 10.1128/aem.62.3.1070-1072.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Field J. A., de Jong E., Feijoo Costa G., de Bont J. A. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol. 1992 Jul;58(7):2219–2226. doi: 10.1128/aem.58.7.2219-2226.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glenn J. K., Akileswaran L., Gold M. H. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Dec;251(2):688–696. doi: 10.1016/0003-9861(86)90378-4. [DOI] [PubMed] [Google Scholar]
  11. Glenn J. K., Gold M. H. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1985 Nov 1;242(2):329–341. doi: 10.1016/0003-9861(85)90217-6. [DOI] [PubMed] [Google Scholar]
  12. Gold M. H., Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev. 1993 Sep;57(3):605–622. doi: 10.1128/mr.57.3.605-622.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gold M. H., Kuwahara M., Chiu A. A., Glenn J. K. Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 1984 Nov 1;234(2):353–362. doi: 10.1016/0003-9861(84)90280-7. [DOI] [PubMed] [Google Scholar]
  14. Hammel K. E., Jensen K. A., Jr, Mozuch M. D., Landucci L. L., Tien M., Pease E. A. Ligninolysis by a purified lignin peroxidase. J Biol Chem. 1993 Jun 15;268(17):12274–12281. [PubMed] [Google Scholar]
  15. Harazono K., Kondo R., Sakai K. Bleaching of Hardwood Kraft Pulp with Manganese Peroxidase from Phanerochaete sordida YK-624 without Addition of MnSO(inf4). Appl Environ Microbiol. 1996 Mar;62(3):913–917. doi: 10.1128/aem.62.3.913-917.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaal E. E., de Jong E., Field J. A. Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1993 Dec;59(12):4031–4036. doi: 10.1128/aem.59.12.4031-4036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khindaria A., Barr D. P., Aust S. D. Lignin peroxidases can also oxidize manganese. Biochemistry. 1995 Jun 13;34(23):7773–7779. doi: 10.1021/bi00023a025. [DOI] [PubMed] [Google Scholar]
  18. Kimura Y., Asada Y., Kuwahara M. Screening of basidiomycetes for lignin peroxidase genes using a DNA probe. Appl Microbiol Biotechnol. 1990 Jan;32(4):436–442. doi: 10.1007/BF00903779. [DOI] [PubMed] [Google Scholar]
  19. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  20. Kondo R., Harazono K., Sakai K. Bleaching of Hardwood Kraft Pulp with Manganese Peroxidase Secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol. 1994 Dec;60(12):4359–4363. doi: 10.1128/aem.60.12.4359-4363.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kondo R., Kurashiki K., Sakai K. In vitro bleaching of hardwood kraft pulp by extracellular enzymes excreted from white rot fungi in a cultivation system using a membrane filter. Appl Environ Microbiol. 1994 Mar;60(3):921–926. doi: 10.1128/aem.60.3.921-926.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kotterman M., Wasseveld R. A., Field J. A. Hydrogen Peroxide Production as a Limiting Factor in Xenobiotic Compound Oxidation by Nitrogen-Sufficient Cultures of Bjerkandera sp. Strain BOS55 Overproducing Peroxidases. Appl Environ Microbiol. 1996 Mar;62(3):880–885. doi: 10.1128/aem.62.3.880-885.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mester T., de Jong E., Field J. A. Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol. 1995 May;61(5):1881–1887. doi: 10.1128/aem.61.5.1881-1887.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ollikka P., Alhonmäki K., Leppänen V. M., Glumoff T., Raijola T., Suominen I. Decolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Dec;59(12):4010–4016. doi: 10.1128/aem.59.12.4010-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paice M. G., Reid I. D., Bourbonnais R., Archibald F. S., Jurasek L. Manganese Peroxidase, Produced by Trametes versicolor during Pulp Bleaching, Demethylates and Delignifies Kraft Pulp. Appl Environ Microbiol. 1993 Jan;59(1):260–265. doi: 10.1128/aem.59.1.260-265.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Paszczyński A., Huynh V. B., Crawford R. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys. 1986 Feb 1;244(2):750–765. doi: 10.1016/0003-9861(86)90644-2. [DOI] [PubMed] [Google Scholar]
  27. Rüttimann-Johnson C., Cullen D., Lamar R. T. Manganese peroxidases of the white rot fungus Phanerochaete sordida. Appl Environ Microbiol. 1994 Feb;60(2):599–605. doi: 10.1128/aem.60.2.599-605.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Urzúa U., Fernando Larrondo L., Lobos S., Larraín J., Vicuña R. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett. 1995 Sep 4;371(2):132–136. doi: 10.1016/0014-5793(95)00874-9. [DOI] [PubMed] [Google Scholar]
  30. Wariishi H., Akileswaran L., Gold M. H. Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry. 1988 Jul 12;27(14):5365–5370. doi: 10.1021/bi00414a061. [DOI] [PubMed] [Google Scholar]
  31. Wariishi H., Valli K., Gold M. H. In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1991 Apr 15;176(1):269–275. doi: 10.1016/0006-291x(91)90919-x. [DOI] [PubMed] [Google Scholar]
  32. Wariishi H., Valli K., Gold M. H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992 Nov 25;267(33):23688–23695. [PubMed] [Google Scholar]
  33. de Jong E., Cazemier A. E., Field J. A., de Bont J. A. Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1994 Jan;60(1):271–277. doi: 10.1128/aem.60.1.271-277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Jong E., Field J. A., de Bont J. A. Evidence for a new extracellular peroxidase. Manganese-inhibited peroxidase from the white-rot fungus Bjerkandera sp. BOS 55. FEBS Lett. 1992 Mar 24;299(1):107–110. doi: 10.1016/0014-5793(92)80111-s. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES