Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 May;63(5):1785–1793. doi: 10.1128/aem.63.5.1785-1793.1997

Effect of Nitrate Injection on the Microbial Community in an Oil Field as Monitored by Reverse Sample Genome Probing

A J Telang, S Ebert, J M Foght, D Westlake, G E Jenneman, D Gevertz, G Voordouw
PMCID: PMC1389150  PMID: 16535595

Abstract

The reverse sample genome probe (RSGP) method, developed for monitoring the microbial community in oil fields with a moderate subsurface temperature, has been improved by (i) isolation of a variety of heterotrophic bacteria and inclusion of their genomes on the oil field master filter and (ii) use of phosphorimaging technology for the rapid quantitation of hybridization signals. The new master filter contains the genomes of 30 sulfate-reducing, 1 sulfide-oxidizing, and 16 heterotrophic bacteria. Most have been identified by partial 16S rRNA sequencing. Use of improved RSGP in monitoring the effect of nitrate injection in an oil field indicated that the sulfide-oxidizing, nitrate-reducing isolate CVO (a Campylobacter sp.) becomes the dominant community component immediately after injection. No significant enhancement of other community members, including the sulfate-reducing bacteria, was observed. The elevated level of CVO decayed at most sampling sites within 30 days after nitrate injection was terminated. Chemical analyses indicated a corresponding decrease and subsequent increase in sulfide concentrations. Thus, transient injection of a higher potential electron acceptor into an anaerobic subsurface system can have desirable effects (i.e., reduction of sulfide levels) without a permanent adverse influence on the resident microbial community.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol. 1992 Feb;58(2):614–623. doi: 10.1128/aem.58.2.614-623.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coates J. D., Anderson R. T., Lovley D. R. Oxidation of Polycyclic Aromatic Hydrocarbons under Sulfate-Reducing Conditions. Appl Environ Microbiol. 1996 Mar;62(3):1099–1101. doi: 10.1128/aem.62.3.1099-1101.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hamilton W. A. Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol. 1985;39:195–217. doi: 10.1146/annurev.mi.39.100185.001211. [DOI] [PubMed] [Google Scholar]
  5. Hicks R. E., Amann R. I., Stahl D. A. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol. 1992 Jul;58(7):2158–2163. doi: 10.1128/aem.58.7.2158-2163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jenneman G. E., McInerney M. J., Knapp R. M. Effect of nitrate on biogenic sulfide production. Appl Environ Microbiol. 1986 Jun;51(6):1205–1211. doi: 10.1128/aem.51.6.1205-1211.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jenneman G. E., Montgomery A. D., McInerney M. J. Method for detection of microorganisms that produce gaseous nitrogen oxides. Appl Environ Microbiol. 1986 Apr;51(4):776–780. doi: 10.1128/aem.51.4.776-780.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol. 1986;40:337–365. doi: 10.1146/annurev.mi.40.100186.002005. [DOI] [PubMed] [Google Scholar]
  10. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature. 1994 Dec 1;372(6505):455–458. doi: 10.1038/372455a0. [DOI] [PubMed] [Google Scholar]
  11. Tardy-Jacquenod C., Caumette P., Matheron R., Lanau C., Arnauld O., Magot M. Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can J Microbiol. 1996 Mar;42(3):259–266. doi: 10.1139/m96-038. [DOI] [PubMed] [Google Scholar]
  12. Telang A. J., Voordouw G., Ebert S., Sifeldeen N., Foght J. M., Fedorak P. M., Westlake D. W. Characterization of the diversity of sulfate-reducing bacteria in soil and mining waste water environments by nucleic acid hybridization techniques. Can J Microbiol. 1994 Nov;40(11):955–964. doi: 10.1139/m94-152. [DOI] [PubMed] [Google Scholar]
  13. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol. 1996 May;62(5):1623–1629. doi: 10.1128/aem.62.5.1623-1629.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Voordouw G., Niviere V., Ferris F. G., Fedorak P. M., Westlake D. W. Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment. Appl Environ Microbiol. 1990 Dec;56(12):3748–3754. doi: 10.1128/aem.56.12.3748-3754.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Voordouw G., Shen Y., Harrington C. S., Telang A. J., Jack T. R., Westlake D. W. Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol. 1993 Dec;59(12):4101–4114. doi: 10.1128/aem.59.12.4101-4114.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Voordouw G., Strang J. D., Wilson F. R. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol. 1989 Jul;171(7):3881–3889. doi: 10.1128/jb.171.7.3881-3889.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Voordouw G. The genus desulfovibrio: the centennial. Appl Environ Microbiol. 1995 Aug;61(8):2813–2819. doi: 10.1128/aem.61.8.2813-2819.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Voordouw G., Voordouw J. K., Jack T. R., Foght J., Fedorak P. M., Westlake D. W. Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl Environ Microbiol. 1992 Nov;58(11):3542–3552. doi: 10.1128/aem.58.11.3542-3552.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Voordouw G., Voordouw J. K., Karkhoff-Schweizer R. R., Fedorak P. M., Westlake D. W. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol. 1991 Nov;57(11):3070–3078. doi: 10.1128/aem.57.11.3070-3078.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. von Graevenitz A., Bucher C. Accuracy of the KOH and vancomycin tests in determining the Gram reaction of non-enterobacterial rods. J Clin Microbiol. 1983 Oct;18(4):983–985. doi: 10.1128/jcm.18.4.983-985.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES